Skip to main content

High temperature combustion reactor

  • Chapter
Combustion of Two-Phase Reactive Media

Part of the book series: Heat and Mass Transfer ((HMT))

  • 439 Accesses

Abstract

One of the possible ways to accelerate chemical processes is to transfer them into a high temperature regime by using combustion reactors. Such reactors can be divided into two limiting types: ideally stirred reactors and displacement reactors. The first type is characterized by its infinitely high rate of mixing of the fresh reactive mixture with combustion products. At such a high mixing rate uniform temperature and concentration fields in the reactor volume are formed. Accordingly, the completeness of combustion, as well as the process temperature, do not depend on the thermal conductivity and diffusivity of the carrier fluid and are completely determined by the conditions at the reactor inlet and by the intensity of any external heat transfer. In contrast, in the second case (displacement reactors) the rate of mixing of the initial reactants with the final products is negligible. The latter results in the existence of non-uniform temperature and concentration distributions in the reactor volume and in the dependence of process characteristics on the heat and mass transfer between the regions filled with cold reactive mixture and high temperature combustion products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramovich GN, Girshovich TA, Krasheninnikov SYu, Sekundov AN, Smirnova, IP (1984) Theory of turbulent jets. (in Russian) Nauka, Moscow

    Google Scholar 

  • Aris R (1965) Introduction to the analysis of chemical reactors. Prentice-Hall, Englewood Cliffs. N. J.

    Google Scholar 

  • Avery JF, Faeth GM (1974) Combustion of a submerged gaseous oxidizer jet in a liquid metal. The Fifteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 501–512

    Google Scholar 

  • Barat RB (1992) Jet-stirred combustor behavior near blowout: observations and implications. Combust. Sci. Technol. 84: 187–197

    Article  Google Scholar 

  • Barichnikov NV, Gager VE, Denisov ND (1979) Metallurgy of zirconium and hafnium. (in Russian) Metallurgya, Moscow

    Google Scholar 

  • Bradley D, Chin SB, Draper MS, Hankinson G (1967). Aerodynamic and flame structure within a jet-stirred rector. The Sixteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 1571–1580

    Google Scholar 

  • Buyevich YuA, Korolyova NA, Natalukha IA (1993a) Modeling of unsteady combustion regimes for polydispersed fuels. 1–instability and auto-oscillations. Int. J. Heat Mass Transfer 36: 2223–2231

    Article  MATH  Google Scholar 

  • Buyevich YuA, Korolyova NA, Natalukha IA (1993b) Modeling of unsteady combustion regimes for polydispersed fuels. 2–parametrically controlled combustion. Int. J. Heat Mass Transfer 36: 2233–2238

    Article  MATH  Google Scholar 

  • Clarke AE, Odgers J, Stringer FW, Harrison AJ (1965) Combustion processes in a spherical combustor. The Tenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 1151–1166

    Google Scholar 

  • Evangelista JJ, Shinnar R, Katz S (1969) The effect of imperfect mixing on stirred combustion reactors. The Twelfth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 901–912

    Google Scholar 

  • Frank-Kamenetskii DA (1969) Diffusion and heat transfer in chemical kinetics - 2nd edn., Plenum, New York

    Google Scholar 

  • Fridman NB, Kitain MM, Shteinberg AS, Merzhanov AG (1981) The mechanics of bubble ignition. Soy. Phys. Dokl. 258: 961–965 (in Russian)

    Google Scholar 

  • Garmata BA, Gulyanitskii, B.S. 1968. The metallurgy of titanium. (in Russian) Metallurgiya, Moscow

    Google Scholar 

  • Genkin AL, Gusika PL, Yarin LP (1981) Stationary states of a two-phase flow reactor. Combust. Explos. Shock Waves 17: 553–558

    Article  Google Scholar 

  • Hottel, HC, Williams GC, Nerheim NM, Schnieder GR (1965) Kinetic studies in stirred reactors: combustion of carbon monoxide and propane. The Tenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 111–121

    Google Scholar 

  • Labowsky M (1980) Calculation of the burning rates of interacting fuel droplets. Combust. Sci. Technol. 22: 217–226

    Article  Google Scholar 

  • Lignola PG, Reverchon E (1988) A jetstirred reactor for combustion studies: design and characterization. Combust. Sci. Technol. 60: 319–333

    Article  Google Scholar 

  • Likhachev VN, Sukhov GS, Yarin LP (1989) Towards a theory of high-temperature gasliquid ideally stirred reactors. Soy. Phys. Dok1. 309: 914–917

    Google Scholar 

  • Likhachev VN, Sukhov GS, Yarin LP (1991) The theory of bubble combustion reactors. Combust. Explos. Shock Waves 27: 191–199

    Article  Google Scholar 

  • Longwell JP, Weiss MA (1955) High-temperature reaction rates in hydrocarbon combustion. Ind. Eng. Chem. 47: 1634–1643

    Article  Google Scholar 

  • Merzhanov AG 1973. The problem of technological combustion. In: Merzhanov AG (ed) Combustion Process in Chenical Technology and Metallurgy. AN SSSR, Chernogolovka, pp. 15–28 (in Russian)

    Google Scholar 

  • Merzhanov AG, Abramov BG (1976). The thermal regimes of the exothermal processes in ideally stirred flowing reactor. Preprint. (in Russian) Institute of Chemical Physics, Chernogolovka

    Google Scholar 

  • Merzhanov AG, Abramov BG (1977). Thermal regimes of the exothermic processes in continous stirred tank reactors. Chem. Eng. Sci. 32: 475–481

    Article  Google Scholar 

  • Nigmatulin RI (1991) Dynamics of multiphase media. vols. 1 and 2. Hemisphere, London

    Google Scholar 

  • Perlmutter DD (1972) Stability of chemical reactors. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Pushkin VN, Sukhov GS, Yarin LP (1993) Thermal conditions of ideal-mixing gas—drop reactor. Combust. Explos. Shock Waves 29: 50–56

    Article  Google Scholar 

  • Sangiovanni JJ, Kesten AS (1975) Effect of droplet interaction on ignition in monodispersed droplet streams. The Sixteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 577–592

    Google Scholar 

  • Sukhov GS, Yarin LP, (1981) Combustion of a jet of immiscible fluids. Combust. Explos. Shock Waves 17: 146–151

    Article  Google Scholar 

  • Sukhov GS, Yarin LP (1983) Calculating the characteristics of immersion burning. Combust. Explos. Shock Waves 19: 155–158

    Article  Google Scholar 

  • Thornton MM, Malte PC, Crittenden AL (1987) A well-stirred reactor for the study of pyrolysis and oxidation kinetics: carbon monoxide and n-pentane oxidation. Combust. Sci. Technol. 54: 275–297

    Article  Google Scholar 

  • Tsai JS, Sterling AM 1990. The combustion of linear droplet arrays. The Twenty-third Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 1405–1411

    Google Scholar 

  • Van Heerden (1953) Autothermic Process. Properties and Reaction Design. Ind. Eng. Chem. 46: 1242–1252

    Article  Google Scholar 

  • Vaughn CB, Sun WH, Howard JB, Longwell JP (1991) Measurements and modeling of light hydrocarbons in rich C2H4 combustion in a jet-stirred reactor. Combust. Flame 84: 38–46

    Article  Google Scholar 

  • Vulis LA (1961) Thermal regimes of combustion. McGraw-Hill, New York

    Google Scholar 

  • Vulis LA, Yarin LP (1978) Aerodynamics of a torch. (in Russian) Energia, Leningrad Williams FA (1985). Combustion theory. 2nd edn., The Benjamin/Cummings, Menlo Park, Calif.

    Google Scholar 

  • Williams GC, Hottel HC, Morgan AS (1969) The combustion of methane in a jet-mixed reactor. The Twelfth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 913–924

    Google Scholar 

  • Yarin LP, (1990) Thermal regime of combustion of bubbly media. Arch. Combust. 10: 185–200

    Google Scholar 

  • Yarin LP, Hetsroni G (1995) On gas-liquid combustion reactor theory (ideally stirred reactor). Combust. Sci. Technol. 109: 93–120

    Article  Google Scholar 

  • Yarin LP, Sukhov GS (1987) Fundamentals of combustion theory of two-phase media. (in Russian) Energoatomizdat, Leningrad

    Google Scholar 

  • Zel’dovich YaB, Barendlatt GI, Librovich VB, Makhviladze GM (1985) Mathematical theory of combustion and explosion. Plenum, New York

    Book  Google Scholar 

  • Aldushin AL, Merzhanov AG, Khaikin BI (1974) Regimes of layer-by-layer filtration combustion of porous metals. Sov. Phys. Dokl. 215: 616–612

    Google Scholar 

  • Aldushin AP, Kasparyan SG (1981) Stability of stationary filtrational combustion waves. Combust. Explos. Shock Waves 17: 615–625

    Article  Google Scholar 

  • Barenblatt GI, Zel’dovich YaB, Istratov AG (1962) On the diffusional-thermal stability of a laminar flame. Zh. Prikl. Mekh. Tekh. Fiz. 4: 21–26 (in Russian)

    Google Scholar 

  • Butakov AA, Shkadinsky KG (1978) A self-sustained oscillation regime of exothermal reaction proceeding in a tubular reactor. Sov. Phys. Dokl. 238: 166–169

    Google Scholar 

  • Butakov AA, Maksimov EI, Shkadinskii GK (1978) Theory of chemical displacement reactors. Combust Explos. Shock Waves 14: 48–54

    Google Scholar 

  • Guzhiev AV, Soldatkina NN, Sukhov GS (1986) Operating states of a filtrational reactor. Combust. Explos. Shock Waves 22: 207–214

    Article  Google Scholar 

  • Hlavacek H, Hofmann H (1970) Modeling of chemical reactors—xix. Transient axial heat and mass transfer in tubular reactors. The stabillity considerations. Chem. Eng. 25: 1517–1526

    Article  Google Scholar 

  • Khaikin BI, Rumanov EN (1975). Exothermic reaction regimes in a one-dimensional flow. Combust. Explos. Shock Waves 11: 573–578

    Article  Google Scholar 

  • Likhachev VN, Sukhov GS, Yarin LP (1991) The theory of bubble combustion reactors. Combust. Explos. Shock Waves 27: 191–199

    Article  Google Scholar 

  • Likhachev VN, Sukhov GS, Yarin LP (1992) Towards a theory of bubble reactor combustion (displacement reactors). Combust. Explos. Shock Waves 28: 129–136

    Article  Google Scholar 

  • Merzhanov AG (1967) Combustion processes in chemical engineering. Pre-print. Branch of Inst. Chem. Phys. (in Russian) AN SSSR, Chernogolovka

    Google Scholar 

  • Merzhanov AG (1980) SHS-process: combustion theory and practice. Arch. Combust. 1: 23–48

    Google Scholar 

  • Merzhanov AG, Filonenko AK (1963) About the thermal self-ignition of homogeneous gaseous mixture in flow. Soy. Phys. Dokl. 152,1: 143–146

    Google Scholar 

  • Stolyarova NN, Sukhov GS, Yarin LP (1980) Theory of a filtration reactor with a stabilized combustion front. Combust. Explos. Shock Waves 16: 174–180

    Article  Google Scholar 

  • Stolyarova NN, Sukhov GS, Yarin LP (1981) Steady conditions in a filtrational reactor. Combust. Explos. Shock Waves 17: 642–646

    Article  Google Scholar 

  • Sukhov GS, Yarin LP (1978) Towards the theory of displacement filtration reactors. Soy. Phys. Dokl. 234: 1442–1444

    Google Scholar 

  • Sukhov GS, Yarin LP (1979) Steady conditions of filtration combustion. Combust. Explos. Shock Waves 15: 1–7

    Article  Google Scholar 

  • Sukhov GS, Yarin LP (1980) Two-dimensional instability of the combustion of porous substances in a gaseous oxidizer. Combust. Explos. Shock Waves 16: 275–280

    Article  Google Scholar 

  • Sukhov GS, Yarin LP (1981a) Combustion waves in bubbly media. Soy. Phys. Dokl.. 256: 376–380

    Google Scholar 

  • Sukhov GS, Yarin LP (198 lb) Laws of combustion of bubbled media. Combust. Explos. Shock Waves 17: 251–257

    Google Scholar 

  • Sukhov GS, Yarin LP (1982) Towards the analysis of steady states of displacement reactors. Found. Chem. Technol. 16: 391–394

    Google Scholar 

  • Sukhov GS, Yarin LP (1988a) Combustion-reactor theory: the dynamic-balance method. Combust. Explos. Shock Waves 24: 1–6

    Article  Google Scholar 

  • Sukhov GS, Yarin LP (1988b) Operating conditions of combustion reactors. Combust. Explos. Shock Waves 24: 263–268

    Article  Google Scholar 

  • Yarin LP, Sukhov GS (1992) On filtration combustion reactor theory. Combust. Sci. Technol. 84: 15–32

    Article  Google Scholar 

  • Zaidel RM, Zel’dovich YaB (1962) On possible stationary combustion regimes. Zh. Prikl. Mekh. Tekh. Fiz. 4: 27–32 (in Russian)

    Google Scholar 

  • Zel’dovich YaB, Barenblatt GI, Librovich VB, Makhviladze GM (1985) Mathematical theory of combustion and explosion. Plenum, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yarin, L.P., Hetsroni, G. (2004). High temperature combustion reactor. In: Combustion of Two-Phase Reactive Media. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06299-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06299-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07316-8

  • Online ISBN: 978-3-662-06299-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics