Skip to main content

Part of the book series: Heat and Mass Transfer ((HMT))

  • 479 Accesses

Abstract

The theory of combustion waves in homogeneous media incorporates a wide class of problems related to the analysis of the physical processes in flames, as well as to the mathematical aspects of solution of the system of nonlinear equations describing combustion wave propagation. A comprehensive discussion of these problems is contained in the monographs and surveys by Frank-Kamenetskii (1969), Williams (1985), Zel’dovich et al. (1985), and Merzhanov and Khaikin (1988, 1992). Referring the reader to these works, we confine our consideration to the calculation of the combustion wave speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballal DR, Lefebvre AH (1981) Flame propagation in heterogeneous mixtures of fuel droplets, fuel vapor and air. The Eighteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 321–328

    Google Scholar 

  • Bhaduri D, Bandyopadhyay S (1971) Combustion in coal dust flames. Combust. Flame 17: 15–24

    Google Scholar 

  • Burgoyne JH, Cohen L (1954) The effect of droplet size on flame propagation in liquid aerosols. Proc. RI Soc. London Ser. A 225: 375–392

    Google Scholar 

  • Cassel HM, Liebman I, Mock WK (1957) Radiative transfer in dust flames. The Sixth Symposium (International) on Combustion. The Combustion Institute. Reinhold, New York, pp. 602–605

    Google Scholar 

  • Cekalin EK (1962) Propagation of flame in turbulent flow of two-phase fuel-air mixture. The Eighth Symposium (International) on Combustion. The Combustin Institute Willliams and Wilkins, Md., Baltimore pp. 1125–1129

    Google Scholar 

  • Essenhigh RH, Csaba J (1963) The thermal radiatin theory for plane flame propagation in coal dust clouds. The Ninth Symposium (International) on Combustion. The Combustion Institute. Academic Press, New York pp. 111–125

    Google Scholar 

  • Frank-Kamenetskii DA (1969) Diffusion and heat transfer in chemical kinetics. 2nd edn. Plenum, New York

    Google Scholar 

  • Gol’tsiker AD, Todes OM, Chiviliatin CA (1977) Theory unstationary flame propagation in aerodispersed systems. In: Combustion and Explosion, Nauka, Moscow pp. 300–306 (in Russian)

    Google Scholar 

  • Greenberg JB, Silverman I, Tambour YA (1996) New heterogeneous burning velocity formula for the propagation of a laminar flame front through a polydisperse spray of droplets. Combust. Flame 104: 358–368

    Google Scholar 

  • Gurevich MA, Ozerova GE, Stepanov AM (1972) The calculation of flame speed in dust of solid fuel. In: Combustion and Explosion. Nauka, Moscow, p. 198 (in Russian)

    Google Scholar 

  • Hayshi S, Kumagai S (1975) Flame propagation in fuel droplet-vapor-air mixture. The Fifteenth Symposium (International) on Combustion. The Combustion Institute., Pittsburgh, Pa., pp. 445–452

    Google Scholar 

  • Khitrin LN (1957) Physics of combustion and explosion. (in Russian) Moscow University, Moscow

    Google Scholar 

  • Krishenik PM, Rumanov EN, Shkadinskii KG (1994) Modeling of combustion wave propagation in a carbon dust/gas mixture. Combust. Flame 99: 713–722

    Google Scholar 

  • Leipunskii II (1960) About the dependence of combustion rate of black powder on pressure. J. Phys. Chem. 34: 114–121 (in Russian)

    Google Scholar 

  • Lin TH, Sheu YY (1991) Theory of laminar flame propagation in near stoichiometric dilute sprays. Combust. Flame 84: 333–342

    Google Scholar 

  • Lin TH, Law CK, Chung SH (1988) Theory of laminar flame propagation in offstoichiometric dilute sprays. Int. J. Heat Mass Transfer 31: 1023–1034

    Google Scholar 

  • Liu C-C, Lin T-H (1991) The interaction between external and internal heat losses on the flame extinction of dilute sprays. Combust. Flame 85: 468–478

    Google Scholar 

  • Merzhanov AG, Khaikin BI (1988) Theory of combustion caves in homogeneous media. Prog. Energy. Combust. Sci. 14: 1–98

    Google Scholar 

  • Merzhanov AG, Khaikin BI (1992) Theory of combustion waves in homogeneous media. (in Russian) AN SSSR, Chernoglovka

    Google Scholar 

  • Merzhanov AG, Khaikin BI, Shkadinskii KG (1969) Establish of stationary flame propagation at gas ignitin by overheated surface. Prikl. Mech.Tech.Phys. 5: 42–48 (in Russian)

    Google Scholar 

  • Mizutani Y (1972) Turbulent flame velocities in premixed sprays. Part II. Theoretical analysis. Combust. Sci. Technol. 6: 11–21

    Google Scholar 

  • Mizutani Y, Nishimoto T (1972) Turbulent flame velocities in premixed sprays. Part 1. Experimental study. Combust. Sci. Technol. 6: 1–10

    Google Scholar 

  • Myers GD, Lefebvre AH (1986) Flame propagation in heterogeneous mixtres of fuel drops and air. Combust. Flame 66: 193–210

    Google Scholar 

  • Nigmatuilin RI (1991) Dynamics of Multiphase Media. v. 1 and 2. Hemisphere. London

    Google Scholar 

  • Ozerov ES (1980) Foundations of the theory of combustion of gas-dispersed systems. (in Russian) L.P.J., Leningrad

    Google Scholar 

  • Ozerova GE, Stepanov AM (1973) Effect of radiation on flame propagation through a gas suspension of solid fuel particles. Combust. Explos. Shock Waves 9: 543–549

    Google Scholar 

  • Polymeropoulos CE (1974) Flame propagation in a one-dimensional liquid fuel spray. Combust. Sci. Technol. 9: 197–207

    Google Scholar 

  • Polymeropoulos CE, Das S (1975) The effect of droplet size on the burning velocity of kerosene-air-sprays. Combust. Flame 25: 247–257

    Google Scholar 

  • Richards GA, Lefebvre AH (1989) Turbulent flame speeds of hydrocarbon fuel droplets in air. Combust. Flame 78: 299–307

    Google Scholar 

  • Rumanov EN, Khaikin BI (1971) Towards the flame propagation in gas/particle mixtutre. Soy. Phys. Dokl. 201: 144–147

    Google Scholar 

  • Rumanov EN, Khaikin BI (1972) Regimes of flame propagation in gas/particle mixture. Combkustion and Explosion. The Third All Union Symposium on Combustion and Explosion. Nauka, Moscow pp. 161–165

    Google Scholar 

  • Seshadri K, Berlad AL, Tangirala V (1992) The structure of premixed particle-cloud flames. Combust. Flame 89: 333–342

    Google Scholar 

  • Silverman I, Greenberg JB, Tambour Y (1993) Stoichiometry and polydisperse effects in premixed spray flames. Combust. Flame 93: 97–118

    Google Scholar 

  • Sirignano WA (1999) Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge

    Google Scholar 

  • Slezak SE, Buckius RO, Krier H (1985) A model of flame propagation in rich mixtures of coal dust in air. Combust. Flame 59: 251–265

    Google Scholar 

  • Spalding DB (1953) Theoretical aspect of flame stabilizatin. An approximate graphical method for the flamespeed of mixed gases. Aircraft Eng. 25: 264–276

    Google Scholar 

  • Stepanov AM (1976) The theoretical study of regimes of ignition and flame propagation in gas-dispersed stems. Ph.D. Thesis. (in Russian) Leningrad Polytech. Institute

    Google Scholar 

  • Sukhov GS, Yarin LP (1981a) Combustion waves in bubbly media. Soy. Physics Dokl. 256: 376–380

    Google Scholar 

  • Sukhov GS, Yarin LP (198lb) Laws of combustion of bubbled media. Combust. Explos. Shock Waves 17: 251–257

    Google Scholar 

  • Vainshtein PB (1973) Radiative frame front in gas/particle mixture. Prikl. Mech. Tech. Phys. 3: 83–91 (in Russian)

    Google Scholar 

  • Vainshtein PB, Nigmatulin RI (1971) Combustion of gas/particle mixture. Prikl. Mech.Tech. Phys. 4: 19–33 (in Russian)

    Google Scholar 

  • Vainshtein PB, Nigmatulin RI (1973) Towards the theory of flame propagation in gas/droplet mixture. Prikl. Mech.Tech.Phys. 4: 101–108 (in Russian)

    Google Scholar 

  • Williams FA (1959) Spray combustion theory. Combust. Flame 3: 215–228

    Google Scholar 

  • Williams FA (1985) Combustion theory. 2nd edn. Benjamin/Cummings, Menlo Park, Calif

    Google Scholar 

  • Zel’dovich YAB (1941) The theory of limit of slow flame propagation. J. Exp. Theor. Phys. 11: 159–168

    Google Scholar 

  • Zel’dovich YaB (1948) Towards a theory of flame propagation. J. Phys. Chem. 22: 27–48 (in Russian)

    Google Scholar 

  • Zel’dovich YAB, Barenblatt GI (1959) Theory of flame propagation. Combust. Flame. 3: 61–74

    Google Scholar 

  • Zel’dovich YAB, Frank-Kamenetskii DA (1938a) The theory of thermal flame propagation. J. Phys. Chem. 12: 100–105 (in Russian)

    Google Scholar 

  • Zel’dovich YAB, Frank-Kamenetskii DA (1938b) Towards the theory of uniform flame propagation. Soy. Phys. Dokl. 19: 693–695

    Google Scholar 

  • Zel’dovich YB, Barenblatt GI, Librovich VB, Makhviladze GM (1985) Mathematical theory of combustion and explosion. Plenum, New York.

    Google Scholar 

  • Babkin VS, Kakutkina NA, Zamashchikov VV (1994) Characteristics of water-base foam combustion. The Twenty-Fifth Symposium (international) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 1627–1627

    Google Scholar 

  • Fridman NB, Kitain MM, Shteinberg AS, Merzanov AG (1981) On the mechanism of bubble ignition. Sov. Phys. Dokl. 258: 961–965

    Google Scholar 

  • Kraynik AM (1988) Foam flows. In: Lumey Jl, Van Dyke M, Reed HL (eds) Annu. Rev. Fluid Mech. 20: 325–357

    Google Scholar 

  • Likhachev VN, Sukhov GS, Yarin LP (1986) On some regularities of combustion wave propagation in bubble media. Chemical physic of combustion and explosion, combustion processes, In: combustions condensed systems. OIKhF. of AN SSSR, Chernogolovka, pp. 120–122

    Google Scholar 

  • Likhachkev VN, Sukhov GS, Yarin LP (1992) Combustion of bubble media. Combust. Explos. Shock Waves 28: 120–129

    Google Scholar 

  • Merzhanov AG, Barzykin VV, Gontkovski VV (1963) The problem of seated thermal explosion. Soy. Phys. Dokl. 148: 380–383

    Google Scholar 

  • Nigmatulin RI (1991) Dynamics of multiphase media. Hemisphere, London. vols. 1 and 2. Reinelt DA, Kraynik AM (1996) Simple shearing flow of a dry Kelvin soap foam. J. Fluid Mech 311: 327–343

    Google Scholar 

  • Sukhov GS, Yarin LP (1980) Combustion wave propagation in bubbly media. Chemical Physics of Problems of Combustion and Explosion. Combustion of Condensed and Heterogeneous Systems. AN SSSR, Chernogolovka, pp. 108–111

    Google Scholar 

  • Sukhov GS, Yarin LP (1981) Combustion waves in bubbly media. Sov. Phys. Dokl. 256: 376–380

    Google Scholar 

  • Sukhov GS, Yarin LP (1981) Laws of combustion of bubbled media. Combust. Explos. Shock Waves 17: 251–257

    Google Scholar 

  • Yarin LP, Sukhov GS (1987) Fundamentals of the theory of two-phase media combustion. (in Russian) Energoatomizdat, Leningrad

    Google Scholar 

  • Zamashchikov VV, Kakutkina NA (1993) Experimental studies of the combustion mechanism of water-base foams filled with fuel gases. Combust. Explos. Shock Waves 29: 142–147

    Google Scholar 

  • Zamashchikov VV, Kakutkina NA (1994) Effect of interphase heat transfer on the combustion velocity of foams. Combust. Explos. Shock Waves 30: 772–780

    Google Scholar 

  • Zamashchikov VV, Babkin VS, Tikhomolov EM, Golulbushkin LM, Sofilkanich OK, Kann KB, Shreiber IR (1988) Experimental studies hydrocombustible foam. Combust. Explos. Shock Waves 24: 413–415

    Google Scholar 

  • Zel’dovich YaB, Barenblatt GI, Librovich VB, Makhviladze GM (1985) Mathematical theory of combustion and explosion. Plenum, New York

    Google Scholar 

  • Aldushin AP (1993) New results in the theory of filtration combustion. Combust. Flame 94: 308–320

    Google Scholar 

  • Aldushin AP, Kasparyan SG (1981) Stability of stationary filtrational combustion waves. Explos. Shock Waves 17: 615–625

    Google Scholar 

  • Aldushin AP, Khaikin BI (1974) Combustion of mixtures foiming condensed reaction products. Combust. Explos. Shock Waves 10: 273–280

    Google Scholar 

  • Aldushin AP, Merzhanov AG (1988) Theory of filtration combustion: General representations and the state of research. In: Matros YuSh (ed) Propagation of thermal waves in heterogeneous media. (in Russian) Nauka, Novosibirsk

    Google Scholar 

  • Aldushin AP, Seplyarskii BS (1977) Theory of filtration combustion of porous metal samples. (in Russian) Preprint. ANSSSR, Chernogolovka

    Google Scholar 

  • Aldushin AP, Seplyarskii BS (1978) Propagation of waves of exothermal reaction in porous medium during gas blow-through. Sov. Phys. Dokl. 241: 72–75

    Google Scholar 

  • Aldushin AP, Seplyarskii BS (1979) Inversion structure of combustion wave in porous media at gas blowing. Soy. Phys. Dokl. 249: 585–589

    Google Scholar 

  • Aldushin AP, Ivleva TP, Merzhanov AG, Khaikin BI, Shkadinskii KG (1975) Spread of combustion front in porous metal samples. (in Russian) In: Merzhanov AG (ed) Processes of combustion in chemical engineering and metallurgy. A.N.SSSR, Chernogolovka, pp. 245–252

    Google Scholar 

  • Aldushin AP, Matkovsky BJ, Volpert VA (1994a) Interaction of gasless and filtration combustion. Combust. Sci. Technol. 99: 75–103

    Google Scholar 

  • Aldushin AP, Matkowsky BJ, Volpert VA (1994b) Enhancement of gasless combustion synthesis by counterflow gas filtration. Combust. Sci. Technol. 103: 1–20

    Google Scholar 

  • Aldushin AP, Merzhanov AG, Khaikin BI (1974) The patterns of the layer-bylayer filtration combustion in porous metals. Soy. Phys. Dokl. 215: 612–616

    Google Scholar 

  • Aldushin AP, Merzhanov AG, Seplyarskii BS (1977) Theory of filtration combustion of metals. Combust. Explos. Shock Waves 12: 285–294

    Google Scholar 

  • Aldushin AP, Seplyarskii BS, Shkadinskii KG (1980) Theory of filtration combustion. Combust. Explos. Shock Waves 16: 33–39

    Google Scholar 

  • Aravin VI, Numerov SN (1953) The theory of motion of liquids and gases in non-deformed porous medium. (in Russian) Gostekhizdat, Moscow

    Google Scholar 

  • Barenblatt GJ, Zel’dovich YaB, Istratov AG (1962) On diffusional-thermal stability of a laminar flame. Zh. Prikl. Mekh. i Tekh. Fiz. (J. Appl. Mech. Tech. Phys.) 4: 21–26

    Google Scholar 

  • Boody MR, Matkowsky BJ (1991) On the stability of counter flow filtration combustion. Combust. Sci. Technol. 80: 231–264

    Google Scholar 

  • Buckmaster J (1993) The structure and stability of laminar flames. In: Lumley L, Van Dyke M, Reed HL (eds) Annu. Rev. Fluid Mech. 25: 21–53

    Google Scholar 

  • Darrieus G (1938) Propagation d’un front de flamme:assai de theorie des vitesses anomales de deflagration par developpement spontane de la turbulence. Presented at the 6th Int. Congr. Appl. Mech. Paris, 1946

    Google Scholar 

  • Frank-Kamenetskii DA (1969) Diffusion and heat transfer in chemical kinetics. 2nd edn., Plenum, New York

    Google Scholar 

  • Hauffe K (1955) Reaktionen in and an festen stoffen. Springer. Berlin, GStingen, Heidelberg

    Google Scholar 

  • Istratov AG, Librovich VB (1966a) Stability of flames. (in Russian) VINITI AN SSSR

    Google Scholar 

  • Istratov AG, Librovich VB (1966b) The influence of transport processes on the stability of a plane flame front. Prikl. Mat. Mekh. (Appl. Math. Mech.) 30: 451–456 (in Russian)

    Google Scholar 

  • Ivleva TP, Merzhanov AG, Shkadinskii KG (1980) The surface combustion condensed substances with condensed products. In: Combustion of condensed systems. (in Russian) AN SSSR, Cherkonoglovka, pp. 99–103

    Google Scholar 

  • Kantorovich BV (1958) Foundations of the theory of combustion and gasification of solid fuel. (in Russian) AN SSSR, Moscow

    Google Scholar 

  • Khitrin LN (1957) The physics of combustion. (in Russian) Moscow University

    Google Scholar 

  • Landau LD, Lifshitz AM (1968). Statistical physics. Pergamon, New York

    Google Scholar 

  • Landau LD, Lifshitz EM (1959) Fluid mechanics. 2nd edn., Pergamon, London

    Google Scholar 

  • Lebedev AD, Sukhov GS, Yarin LP (1976) Stability of filtration combustion. Combust. Explos. Shock Waves 12: 775–779

    Google Scholar 

  • Lebedev AD, Sukhov GS, Yarin LP (1977) Theory of filtration combustion. Corn-bust. Explos. Shock Waves 13: 7–11

    Google Scholar 

  • Makhviladze GM, Novozilov BV (1971) Two-dimensional instability combustion condensed system. Zh. Prikl. Mekh. Tekh. Fiz. 5: 51–59

    Google Scholar 

  • Markstein GH (1951) Experimental and theoretical studies of flame front stability. J. Aeronaut. Sci. 18: 199–209

    Google Scholar 

  • Markstein GH (1953) Instability phenomena in combustion waves. The Fourth Symposium (International) on Combustion (Combustion and Detonation waves). Williams and Wilkins, Md., Baltimore pp. 44–59

    Google Scholar 

  • Merzhanov AG, Khaikin BI (1992) The theory of combustion Wave in homogenous media. (in Russian) Russian Academy, Chernogolovka

    Google Scholar 

  • Ohlemiller TJ (1985) Modeling of smoldering combustion propagation. Prog. Eng. Combust. Sci. 11: 277–310

    Google Scholar 

  • Ohlemiller TJ, Lucca DA (1983) An experimental comparison of forward and reverse smolder propagation in permeable fuel beds. Combust. Flame. 54: 131147

    Google Scholar 

  • Pityulin AN, Shcherbakov VA, Borovinskaya IP, Merzhanov AG (1979) Laws and mechanism of diffusional surface burning of metals. Combust. Explos. Shock Waves 15: 432–437

    Google Scholar 

  • Schult DA, Matkowsky BJ, Volpert VA, Fernandez-Pello AC (1995) Propagation and extinction of forced opposed flow smolder waves. Combust. Flame 101: 471–490

    Google Scholar 

  • Schult DA, Matkowsky BJ, Volpert VA, Fernandez-Pello AC (1996) Forced forward smolder combustion. Combust. Flame 104: 1–26

    Google Scholar 

  • Sivashinsky GI (1983) Instabilities, pattern Formulation, and turbulence in flames. Annu. Rev. Fluid Mech. 15: 179–199

    Google Scholar 

  • Shkadinskii KG, Shkadinskaya GV, Matkovsky BJ, Volpert VA (1992) Self-compaction or expansion in combustion synthesis of porous materials. Combust. Sci. Technol. 88: 271–292

    Google Scholar 

  • Stolyarova NN, Sukhov GS, Yarin LP (1980). Theory of filtration reactor with a stabilized combustion front. Combust. Explos. Shock Waves 16: 174–180

    Google Scholar 

  • Sukhov GS, Yarin LP (1980) Two-dimensional instability of the combustion of porous substances in a gaseous oxidizer. Combust. Explos. Shock Waves 16: 275–280

    Google Scholar 

  • Yarin LP, Sukhov GS (1987) Fundaments of combustion theory of two-phase media. (in Russian) Energoatomizdat, Leningrad

    Google Scholar 

  • Yarin LP, Sukhov GS (1989) A heterogeneous model of combustion of porous media. Combust. Sci. Technol. 64: 67–80

    Google Scholar 

  • Zabrodskii SS (1963) Hydrodynamics and heat exchange in a fluidized bed. Gosenergoizdat, (in Russian) Moscow Leningrad

    Google Scholar 

  • Zel’Dovich YAB (1984) Towards the theory of reaction on porous or powder-like material. J. Phys. Chem. (1939), 13: 163–169 Selected Papers. Chemical Physics and Gas Dynamics. Moscow, pp. 65–70 (in Russian)

    Google Scholar 

  • Zel’Dovich YAB, Sokolov DD (1985) Fractals, self-similarity and intermediate asymptotics. Uspekhi Fiz. Nauk. 146: 434–506 (in Russian)

    Google Scholar 

  • Zel’Dovich YAB, Barenblatt GI, Librovich VB, Makhviladze GM (1985) Mathematical theory of combustion and explosion. Plenum, New York

    Google Scholar 

  • Abramovich GN (1963) The theory of turbulent jet. MTI Press, Cambridge, Mass

    Google Scholar 

  • Abramovich GN (1970) The effect of an admixture of solid particles or droplets on the structure of turbulent gas jet. Sov. Phys. Dokl. 190: 1052–1055 (in Russian)

    Google Scholar 

  • Abramovich GN, Girshovich TA, Krasheninnikov SYa, Sekundov A.N, Smirnova IP (1984) Theory of turbulent jets. (in Russian) Nauka, Moscow

    Google Scholar 

  • Al-Tawell AM, Landau J (1977) Turbulence modulation in two-phase jets. Int. J. Multiphase Flow 3: 341–351

    Google Scholar 

  • Babii BI, Kuvaev JaF (1986) Combustion of coal dust and coal dust flame calculation. (in Russian) Energoatomizdat, Moscow

    Google Scholar 

  • Barlow RS, Morrison CQ (1990) Two-phase velocity measurements in dense particle-laden jets. Exp. Fluid 9: 93–104

    Google Scholar 

  • Boothroyd RG (1974) Following gas—solid suspensions. Charman and Hall, London

    Google Scholar 

  • Crowe CT (2000) On models for turbulence modulation in fluid-particle flows. Int. J. Multiphase Flow 26: 719–727

    MATH  Google Scholar 

  • Danon H, Wolfschtein M, Hetsroni G (1977) Numerical calculations of two-phase turbulent round jet. Int. J. Multiphase Flow 3: 223–234

    MATH  Google Scholar 

  • Fleckhaus D, Hishida K, Maeda M (1987) Effect of laden solid particles on the turbulent flow structure of a round free jet. Exp. Fluids 5: 323–333

    Google Scholar 

  • Frishman F, Hussainov M, Kartushinsky A, Mulgi A (1997) Numerical simulation of a two-phase turbulent pipe jet flow loaded with polydispersed solid admixture. Int. J. Multiphase Flow 23: 765–796

    MATH  Google Scholar 

  • Goldshmidt V, Eskinazi S (1966) Two-phase turbulent flow in a plan jet. J. Appl. Mech. 33: 735–747

    Google Scholar 

  • Gore RA, Crowe CT (1989) Effect of particle size on modulating turbulent intensity. Int. J. Multiphase Flow 15: 279–285

    Google Scholar 

  • Hetsroni G (1989). Particles-turbulence interaction Int. J. Multiphase Flow 15: 735–746

    Google Scholar 

  • Hetsroni G, Sokolov M (1971) Distribution of mass, velocity and intensity of turbulence in two-phase turbulent jet. Trans. ASME, J. Appl. Mech. 38: 315–327

    Google Scholar 

  • Kantorovich BV (1958) Foundation of the theory of solid fuel combustion and gasification. (in Russian) AN SSSR, Moscow

    Google Scholar 

  • Khitrin LN (1957) Physics of combustion and explosion. (in Russian) Moscow University, Moscow

    Google Scholar 

  • Laats MK (1966) Experimental study of the dynamics of an air-dust jet. InshenernoFizicheskii Zh. 10: 11–15

    Google Scholar 

  • Laats MK, Frishman FM (1970) Assumptions used for the calculation of the two-phase turbulent jet. Fluid Dyn. 5: 333–338

    Google Scholar 

  • Levy Y, Lockwood FC (1981) Velocity measurements in a particle-laden turbulent free jet. Combust. Flame 40: 333–339

    Google Scholar 

  • Modarress D, Tan H, Elghobashi S (1984a) Two-component LDA measurement in a two-phase turbulent jet. AIAA J. 22: 624–630

    Google Scholar 

  • Modarress D, Wuerer J, Elghobashi S (1984b) An experimental study of a turbulent round two-phase jet. Chem. Eng. Commun. 28: 341–354

    Google Scholar 

  • Mostafa AA, Mongia HC, McDonell VG, Samuelsen GS (1989) Evolution of particle-laden jet flows: a theoretical and experimental study. AIAA J. 27: 167–183

    Google Scholar 

  • Navoznov SI, Pavel’ev AA, Mulgi AS, Laats MK (1979) Effect of initial slip on admixture dispersion in two-phase jet. In: Laats MK (ed) Turbulent two-phase flows. The III All-Union Conference in Theoretical and Applied Aspects of Turbulent Flows. Part II, pp. 149–157. Tallinn, Moscow (in Russian)

    Google Scholar 

  • Onuma Y, Ogasawara M (1974) Studies on the structure of a spray combustion flame. In: Chaiken RF (ed) The Fifteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pa., pp. 453–463

    Google Scholar 

  • Parthasarathy RN, Faeth GM (1987) Structure of particle-laden turbulent water jets in still water. Int. J. Multiphase Flow 13: 699–716

    Google Scholar 

  • Patankar SV, Spalding DB (1970) Heat and mass transfer in boundary layers. 2nd edn., Intertext, London

    Google Scholar 

  • Popper J, Abuaf N, Hetsroni G (1974) Velocity measurements in two-phase turbulent jet. Int. J. Multiphase Flow 1: 715–726

    Google Scholar 

  • Prevost F, Boree J, Nuglisch HJ, Charnay G (1996) Measurements of fluid/particle correlated motion in the far field of an axisymmetric jet. Int. J. Multiphase Flow 22: 686–701

    Google Scholar 

  • Rezn’akov AB, Basina JP, Vdovenko MI, Ustimenko BP (1968) Combustion of fossil fuel. (in Russian) Science, Alma-Ata.

    Google Scholar 

  • Sheen HJ, Jou BH, Lee YT (1994) Effect of particle size on two-phase turbulent jet. Exp. Thermal Fluid Sci. 8: 315–327

    Google Scholar 

  • Shuen J-S, Solomon ASP, Zhang Q-F, Faeth GM (1985) Structure of particle-laden jets: measurements and predictions. AIAA J. 23: 396–404

    Google Scholar 

  • Smoot LD, Smith PJ (1985) Coal Combustion and Gasification. Plenum, New York. Stambuleanu A ( 1976 ). Flame combustion processes in industry. ABACUS Press, Tunbridge Wells, Kent

    Google Scholar 

  • Sukhov GS, Yarin LP (1986) Calculation of turbulent heterogeneous flames. Combust. Explos. Shock Waves 22: 44–48

    Google Scholar 

  • Tsuji Y, Morikawa Y, Tanaka K, Karimine K, Nishida S (1988) Measurement of an axisymmetric jet laden with coarse particles. Int. J. Multiphase Flow 14: 565–574

    Google Scholar 

  • Vulis LA, Yarin LP (1978) Aerodynamic of a torch. (in Russian) Energia, Leningrad

    Google Scholar 

  • Yarin LP, Hetsroni G (1994) Turbulence intensity in dilute two-phase flows–3. The particles-turbulence interaction in dilute two-phase flow. Int. J. Multiphase Flow 20: 27–44

    MATH  Google Scholar 

  • Zel’dovich Ya B, Sadovnikov PYa, Frank-Kamenetskii DA (1947) Nitrogen oxidation at combustion. (in Russian) AN SSSR, Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yarin, L.P., Hetsroni, G. (2004). Combustion wave propagation. In: Combustion of Two-Phase Reactive Media. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06299-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06299-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07316-8

  • Online ISBN: 978-3-662-06299-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics