Skip to main content

Ecological aspects of cold-adapted plants with a special emphasis on environmental control of cold hardening and dehardening

  • Chapter
Cold-Adapted Organisms

Abstract

The distribution of plant species is limited mainly by two environmental factors, the availability of water and temperature. Based on these factors, vegetation on the earth can be divided into a number of major vegetation zones. Biochemical reactions and growth processes in plants are temperature-dependent and have their minimum, optimum and maximum conditions. Temperature conditions are often suboptimal for growth, development, propagation and survival, and low temperatures commonly limit the growth of plants. In large areas of the earth’s land surface, temperatures decrease either periodically in a seasonal pattern, or episodically below 0°C (Fig. 1). Approximately one-third of the land area is frost-free and areas with the minimum temperature below −20°C comprise about 42%.1, 2 In these areas, frost can be one of the most important factors limiting distribution of plants. Of the estimated 250,000 species of vascular plants existing today, approximately 40% grow in tropical forests and the number of species strongly decreases with increasing altitude and latitude. Over evolutionary time, plant species have developed various adaptive strategies and mechanisms for survival in freezing conditions, but still the number of species capable of surviving periodic freezing is very low. However, native plant species are well adapted to survive in their ambient climatic conditions, and are damaged only if temperature and/or precipitation strongly deviates from the long-term mean, either transiently or more permanently in the event of changes in the global climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Larcher W. Physiological Plant Ecology, 3rd ed. Berlin: Springer, 1995.

    Book  Google Scholar 

  2. Larcher W, Bauer H. Ecological significance of resistance to low temperature. In: Encyclopedia of Plant Physiology, vol 12A. Berlin: Springer, 1981: 403–437.

    Google Scholar 

  3. Grace J. Tree lines. Phil Trans R Soc London, 1989; B324: 233–245.

    Article  Google Scholar 

  4. Sakai A, Larcher W. Frost Survival of Plants. Berlin: Springer, 1987.

    Book  Google Scholar 

  5. Körner Ch, Larcher W. Plant life in cold climates. In: Long SP, Woodward FI, eds. Plants and Temperature. Cambridge: The Company of Biologists Ltd, 1988: 25–58.

    Google Scholar 

  6. Woodward FI, Kelly CK. Plant functional types: towards a definition by environmental constraints. In: Smith TM, Shugart HH, Woodward FI, eds. Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change. International Geosphere-Biosphere Programme Book Series. Cambridge: Cambridge Univ Press, 1997: 47–65.

    Google Scholar 

  7. Aune B. Klima (Climate). Nasjonalatlas for Norge. Honefoss: Statens Kartverk, 1993 (in Norwegian, with English summary).

    Google Scholar 

  8. Dahl E. Flora and plant sociology in Fennoscandian tundra areas. In: Wielgolaski, FE, ed. Fennoscandian Tundra Ecosystems, Part 1. Plants and microorganisms. Berlin: Springer, 1975: 62–67.

    Chapter  Google Scholar 

  9. Billings WD. High mountain ecosystems. Evolution, structure, operation and maintenance. In: Webber PJ, ed. High Altitude Geoecology. Boulder, Colorado: Westview Press, Inc, 1979: 97–125.

    Google Scholar 

  10. Cooper JE. An ecophysiological investigation of some species of arctic and temperate Ranunculus L. with special respect to climate warming. Univ Bradford, UK: PhD Thesis, 1996.

    Google Scholar 

  11. Kallio P. Adaptation and evolution at the northern limits of life. Acta Univ Oul F 1. Scripta Acad 1984: 131–150.

    Google Scholar 

  12. Sakai A, Paton DM, Wardle P. Freezing resistance of trees of the south temperate zone, especially subalpine species of Australasia. Ecology 1981; 62: 563–570.

    Article  Google Scholar 

  13. Lipp CC, Goldstein G, Meinzer FC, Niemczura W. Freezing tolerance and avoidance in high-elevation Hawaiian plants. Plant Cell Environ 1994; 17: 1035–1044.

    Article  Google Scholar 

  14. Sakai A. Freezing resistance in willows from different climates. Ecology 1970; 51: 458–491.

    Google Scholar 

  15. Hurme P, Repo T, Savolainen O, Pääkkönen T. Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris). Can J For Res 1997; 27: 716–723.

    Article  Google Scholar 

  16. Rehfeldt GE. Cold acclimation in populations of Pinus contorta from the northern Rocky Mountains. Bot Gaz 1980; 141: 458–463.

    Article  Google Scholar 

  17. Stushnoff C, Junttila O, Kaurin A. Genetics and breeding for cold hardiness in woody plants. In: Kaurin A, Junttila O, Nilsen J, eds. Plant Production in the North. Oslo: Norwegian Univ Press, 1985: 141–156.

    Google Scholar 

  18. Junttila O. Physiological responses to low temperature. Annal Sciences Forestrières 1989; 46 (Suppl.): 604–613.

    Article  Google Scholar 

  19. Sutka J, Galiba G, Quarrie SA, Veisz O, Snape JW. Cytogenetic studies on frost resistance in wheat (Triticum aestivum L.). In: Dörffling K, Brettschneider B, Tantau H, Pithan K, eds. Crop Adaptation to Cool Climates. COST 814 Workshop October 12–14, 1994. Brussels: Europian Commission, 1994: 377–388.

    Google Scholar 

  20. Johnsen 0,Skroppa T, Tigerstedt PMA. Adaptive properties of Picea abies progenies are influenced by environmental signals during sexual reproduction. Euphytica 1996; 92:67–71.

    Google Scholar 

  21. Wiesniewski M, Fuller M. Ice nucleation and deep supercooling in plants: new insights using infrared thermography. In this book.

    Google Scholar 

  22. Levitt J. Responses of Plants to Environmental Stresses, vol. 1. Chilling, Freezing and High Temperature Stresses. New York: Academic Press, 1980.

    Google Scholar 

  23. Hirsch AG. Vitrification in plants as a natural form of cryoprotection. Cryobiology 1987; 24: 214–228.

    Article  Google Scholar 

  24. Junttila O, Stushnoff C. Freezing avoidance by deep supercooling in hydrated lettuce seeds. Nature1977; 269: 325–327.

    Google Scholar 

  25. Hartung W, Schiller P, Dietz K-J. Physiology of poikilohydric plants. In: Behnke H-D, Esser K, Kadereit JW, Lüttge U, Runge M, eds. Progress in Botany 59. Berlin: Springer, 1997: 299–327.

    Chapter  Google Scholar 

  26. Junttila O, Stushnoff C, Gusta LV. Dehardening of flower buds on Saskatoon-berry, Arnelanchier alnifolia, in relation to temperature, moisture content, and spring bud development. Can J Bot 1983; 61: 164–170.

    Article  Google Scholar 

  27. Svenning MM, Junttila O, Rosnes K. Frost tolerance and biochemical changes during hardening and dehardening in contrasting genotypes of white clover (Trifolium repens L.). Physiol Plant 1997; 101: 31–37.

    Article  CAS  Google Scholar 

  28. Yoshida M, Moriyama M, Shimokawa S, Nakamura Y. Seasonal changes in the physical state of crown water associated with freezing tolerance in winter wheat. Physiol Plant 1997; 99: 363–370.

    Article  CAS  Google Scholar 

  29. Nobel PS. Low-temperature tolerance and cold hardening of cacti. Ecology 1982; 63: 1650–1656.

    Article  Google Scholar 

  30. Ishikawa M, Gusta LV. Freezing and heat tolerance of Opuntia cacti native to the Canadian prairie province. Can J Bot 1996; 74: 1890–1895.

    Article  Google Scholar 

  31. Steponkus PL. Role of plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 1984; 35: 543–584.

    Article  CAS  Google Scholar 

  32. Reaney MJT, Gusta LV. Modeling sequential responses of plant cells to freezing and thawing. In this book.

    Google Scholar 

  33. Langan SJ, Ewers FW, Davis SD. Xylem dysfunction caused by water stress and freezing in two species of co-occurring chaparral shrubs. Plant Cell Environ1997; 20: 425–437.

    Google Scholar 

  34. Barclay AM, Crawford RMM. Winter desiccation stress and resting bud viability in relation to high altitude survival in Sorbus aucuparia L. Flora 1982; 172: 21–34.

    Google Scholar 

  35. Beck E, Schulze ED, Senser M, Scheibe R. Equilibrium freezing of leaf water and extracellular ice formation in afroalpine ‘giant rosette’ plants. Planta 1984; 162: 276–282.

    Article  Google Scholar 

  36. Tignor ME, Davies FS, Sherman WB. Rapid freeze acclimation of Poncirus trifoliata seedlings exposed to 10°C and long days. HortScience 1997; 32: 854–857.

    CAS  Google Scholar 

  37. Meza-Basso L, Guarda P, Rios D, Alberdi M. Changes in free amino acid content and frost resistance in Nothofagus dombey leaves. Phytochemistry 1986; 25: 1843–1846.

    Article  CAS  Google Scholar 

  38. Larcher W, Meindl U, Raiser E, Ishikawa, M. Persistent supercooling and silica deposition in cell walls of palm leaves. J Plant Physiol 1991; 139: 146–154.

    Article  CAS  Google Scholar 

  39. Squeo F, Rada F, Garcia C, Ponce M, Rojas A, Azócar A. Cold resistance mechanisms in high desert Andean plants. Oecologia 1996; 105: 552–555.

    Article  Google Scholar 

  40. Beck E, Senser M, Scheibe R, Steiger HM, Pongratz P. Frost avoidance and freezing tolerance in afroalpine ‘giant rosette’ plants. Plant Cell Environ 1982; 5: 215–222.

    Google Scholar 

  41. Hummel RL, Moore PR. Freeze resistance of Pacific Northwest strawberry flowers. J Am Soc Hort Sci 1997; 122: 179–182.

    Google Scholar 

  42. Christersson L. Frost damage during the growing season. In: Kaurin A, Junttila O, Nilsen J, eds. Plant Production in the North. Oslo: Norwegian Univ Press, 1985: 191–198.

    Google Scholar 

  43. Christersson L, von Fircks H, Sihe Y. Damage to conifer seedlings by summer frost and winter drought. In: Li PH, ed. Plant Cold Hardiness. New York: Alan R. Liss Inc, 1987: 203–210.

    Google Scholar 

  44. Robberecht R, Junttila O. The freezing response of an arctic cushion plant, Saxifraga caespitosa L.: Acclimation, freezing tolerance and ice nucleation. Ann Bot 1992; 70: 129–135.

    Google Scholar 

  45. Sakai A, Otsuga K. Freezing resistance of alpine plants. Ecology 1970; 51: 665–671.

    Article  Google Scholar 

  46. Lindow SE. The role of bacterial ice nucleation in frost injury to plants. Annu Rev Phytopathol 1983; 21: 363–384.

    Article  Google Scholar 

  47. Lee RE Jr., Warren GJ, Gusta LV, eds. Biological Ice Nucleation and its Applications. St. Paul, Minnesota: APS Press, 1995.

    Google Scholar 

  48. Weiser CJ. Cold resistance and injury in woody plants. Science 1970; 169: 1269–1278.

    Article  CAS  Google Scholar 

  49. Stushnoff C, Junttila O. Seasonal development of cold stress resistance in several plant species at a coastal and a continental location in North Norway. Polar Biol 1986; 5: 129–133.

    Article  Google Scholar 

  50. Kaurin A, Junttila O, Hansen J. Seasonal changes in frost hardiness in cloudberry (Rubus chamaemorus) in relation to carbohydrate content with special reference to sucrose. Physiol Plant 1981; 52: 310–314.

    Article  CAS  Google Scholar 

  51. Zhou B-L, Arakawa K, Fujikawa S, Yoshida S. Cold-induced alterations in plasma membrane proteins that are spefically related to the development of freezing tolerance in cold-hardy winter wheat. Plant Cell Physiol 1994; 35: 175–182.

    CAS  Google Scholar 

  52. Ryyppö A, Repo T, Vapaavuori E. Development of freezing tolerance in roots and shoots of Scots pine seedlings at non-freezing temperatures. Can J For Res 1998; 28: 557–565.

    Article  Google Scholar 

  53. Coleman MD, Hinckley TM, McNoughton G, Smit BA. Root cold hardiness and native distribution of subalpine conifers. Can J For Res 1992; 22: 932–938.

    Article  Google Scholar 

  54. Kacperska A Biochemical and physiological aspects of frost hardening in herbaceous plants. In: Kaurin A, Junttila O, Nilsen J, eds. Plant Production in the North. Oslo: Norwegian Univ Press, 1985: 99–115.

    Google Scholar 

  55. Gay AP, Eagles CF. Quantitative analysis of cold hardening and dehardening in Lolium. Ann Bot 1991; 67: 339–345.

    Google Scholar 

  56. Eagles CF, Williams J. Hardening and dehardening of Lolium perenne in response to fluctuating temperatures. Ann Bot 1992; 70: 333–338.

    Google Scholar 

  57. Junttila O, Svenning MM, Solheim B. Effects of temperature and photoperiod on frost resistance of white clover (Trifolium repens) ecotypes. Physiol Plant 1990; 79: 435–438.

    Article  Google Scholar 

  58. Hurry VM, Strand A, Tobiason M, Gardeström P, Öquist G. Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 1995; 109: 697–706.

    CAS  Google Scholar 

  59. Olsen JE, Junttila O, Nilsen J, Eriksson M, Martinussen I, Olsson O, Sandberg G, Moritz T. Ectopic expression of oat phytochrome A in hybrid aspen changes critical photoperiod for growth and prevents cold acclimation. Plant J 1997; 12: 1339–1350.

    Article  CAS  Google Scholar 

  60. Junttila O, Olsen JE, Nilsen J, Martinussen I, Moritz T, Eriksson M, Olsson O, Sandberg G. Phytochrome A overexpression and cold hardiness in transgenic Populus. In: Li PH, Chen TH, eds. Plant Cold Hardiness. New York: Plenum Publishing Corporation, 1998: 245–256.

    Google Scholar 

  61. Junttila O, Nilsen J. Growth and development of northern forest trees as affected by temperature and light. In: Alden JN, Odum S, Mastrantonio JL, eds. Forest Tree Development in Cold Climates, Proc Int Symp June 18–24, Laugarvatn, Island, NATO. New York: Plenum Publ Corp, 1993: 43–57.

    Google Scholar 

  62. Heide OM. Growth and dormancy in Norway spruce ecotypes (Picea abies), I. Interaction of photoperiod and temperature. Physiol Plant 1974; 30: 1–12.

    Article  Google Scholar 

  63. Hâbjorg A. Photoperiodic ecotypes in Scandinavian trees and shrubs. Scientific Reports of the Agricultural College of Norway 1978; 57: 1–20.

    Google Scholar 

  64. Puttonen P, Arnott JT. Influence of photoperiod and temperature on growth, gas exchange, and cold hardiness of yellow cypress stecklings. Can J For Res 1994; 24: 1608–1616.

    Article  Google Scholar 

  65. Beck E, Hansen J, Heim R, Schäfer C, Vogg G, Leborgne N, Teulieres C, Boudet AM. Cold hardening and dehardening of evergreen trees. In: Sandermann H Jr, Bonnet-Masembert M, eds. Contribution to Forest Tree Physiology, EUROSILVA, Dordan, France, November 7–10, 1994. Paris: INRA, 1995: 171–193.

    Google Scholar 

  66. Smith H. Physiological and ecological function within the phytochrome family. Annu Rev Plant Physiol Plant Mol Biol 1995; 46: 289–315.

    Article  CAS  Google Scholar 

  67. McKenzie JS, Weiser CJ, Burke MJ. Effects of red and far red light on the initiation of cold acclimation in Cornus stolonifera Michx. Plant Physiol 1974; 53: 783–789.

    Article  CAS  Google Scholar 

  68. Wisniewski M, Ashworth EN. A comparison of seasonal ultrastructural changes in stem tissues of peach (Prunus persica) that exhibits contrasting mechanisms of cold hardiness. Bot Gaz 1986; 147: 407–417.

    Article  Google Scholar 

  69. Rutten D, Santarius KA. Cold acclimation of Ilex aquifolium under natural conditions with special regard to the photosynthetic apparatus. Physiol Plant 1988; 72: 807–815.

    Article  Google Scholar 

  70. Chen THH, Burke MJ, Gusta LV. Frezing tolerance in plants: An overview. In: Lee RE Jr, Warren GJ, Gusta LV, eds. Biological Ice Nucleation and its Applications. St. Paul, Minnesota: APS Press, 1995: 115–136.

    Google Scholar 

  71. Wisniewski M. Deep supercooling in woody plants and the role of cell wall structure. In: Lee RE Jr, Warren GJ, Gusta LV, eds. Biological Ice Nucleation and its Applications. St. Paul, Minnesota: APS Press, 1995: 163–182.

    Google Scholar 

  72. Quamme HA. Deep supercooling in buds of woody plants. In: Lee RE Jr, Warren GJ, Gusta LV, eds. Biological Ice Nucleation and its Applications. St. Paul, Minnesota: APS Press, 1995: 183–200.

    Google Scholar 

  73. Kang SK, Motosugi H, Yonemori K, Sugiura A. Exothermic characteristics of dormant buds of persimmon (Diospyros kaki Thunb.) in relation to cold hardiness. HortScience 1997; 32: 840–843.

    Google Scholar 

  74. Ogren E, Nilsson T, Sundblad LG. Relationship between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures: indications of different sensitivities of spruce and pine. Plant Cell Environ 1997; 20: 247–253.

    Article  Google Scholar 

  75. Leinonen I. A simulation model for the annual frost hardiness and freeze damage of Scots pine. Ann Bot 1997; 78: 687–693.

    Article  Google Scholar 

  76. Walter H. Vegetation of the Earth. Ecological Systems of the Geo-biosphere, 3rd ed. Berlin: Springer, 1994.

    Google Scholar 

  77. Anderson JA, Gusta LV, Buchanan DW, Burke MJ. Freezing of water in Citrus leaves. J Am Soc Hort Sci 1983; 108: 397–400.

    Google Scholar 

  78. Beck E, Scheibe R, Hansen J. Mechanisms of freezing avoidance and freezing tolerance in tropical alpine plants. In: Li PH, ed. Plant Cold Hardiness. New York: Alan R. Liss, Inc, 1987: 155–168.

    Google Scholar 

  79. Burke MJ, Stushnoff C. Frost hardiness: A discussion of possible molecular causes of injury with particular reference to deep supercooling of water. In: Mussell H, Staples R, eds. Stress Physiology in Crop Plants. New York: John Wiley & Sons, Inc, 1979: 198–224.

    Google Scholar 

  80. Gu Y, Sun ZJ, Bi HC, Huang SZ, Chai JH, Geng XM, He SA. Introduction and selection of hardy bread-leaved evergreen woody plants in central China. In: Li PH, ed. Plant Cold Hardiness. New York: Alan R. Liss, Inc, 1987: 363–368.

    Google Scholar 

  81. Gusta LV, Tyler NJ, Chen THH. Deep undercooling in woody taxa growing north of the -40°C isotherm. Plant Physiol 1983; 72: 122–128.

    Article  CAS  Google Scholar 

  82. Hömmö L. Resistance of winter cereals to various winter stress factors — inter-and intraspecific variation and the role of cold acclimation. Agricultural Science in Finland, 1994; 3 (Suppl 1): 1–32.

    Google Scholar 

  83. Kaku S, Iwaya M. Low temperature exotherms in xylems of evergreen and deciduous broad-leaved trees in Japan with reference to freezing resistance and distribution range. In: Li PH, ed. Plant Cold Hardiness. New York: Alan R. Liss, Inc, 1987: 227–239.

    Google Scholar 

  84. Sakai A. Low temperature exotherms of winter buds of hardy conifers. Plant Cell Physiol 1978; 19: 1439–1446.

    Google Scholar 

  85. Sakai A, Hakoda N. Cold hardiness of the genus Camellia. J Am Soc Hort Sci 1979; 104: 5357.

    Google Scholar 

  86. Toivio-Kinnucan MA, Chen THH, Li PH, Stushnoff C. Plasma membrane alterations in callus tissues of tuber-bearing Solanum species during cold acclimation. Plant Physiol 1981; 67: 478–483.

    Article  CAS  Google Scholar 

  87. Junttila O, Robberecht R. The influence of season and phenology on freezing tolerance in Silene acaulis L., a subarctic and arctic cushion plant of circumpolar distribution. Ann Bot 1993; 71: 423–426.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Junttila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Junttila, O., Robberecht, R. (1999). Ecological aspects of cold-adapted plants with a special emphasis on environmental control of cold hardening and dehardening. In: Margesin, R., Schinner, F. (eds) Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06285-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06285-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08445-4

  • Online ISBN: 978-3-662-06285-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics