Skip to main content

Molecular responses in cold-adapted plants

  • Chapter
Cold-Adapted Organisms

Abstract

Plants differ in their responses and resistance to chilling and freezing temperatures because they originate from different areas and have evolved in different environments. The two mechanisms for freezing resistance are avoidance and tolerance.1 Freezing-avoidant plants may avoid freezing by overwintering as a seed with little freezable water, or they may completely avoid any freezing in the tissues by supercooling. Freezing tolerance is the capacity to withstand extracellular ice formation and to avoid intracellular ice formation.2 Levitt classified plants according to their degree of freezing resistance.1 Tender or completely unhardy plants have no avoidance of freezing and these plants are seriously damaged even at temperatures above freezing point, whereas slightly hardy plants survive freezing at about −5°C. Moderately hardy plants accumulate sugars and other solutes, and are able to survive freezing temperatures within −5 to −10°C. Very hardy plants have developed mechanisms leading to a marked avoidance of both intracellular freezing and extracellular freeze-dehydration resulting from removal of water from the cytoplasm to the growing ice crystals. These plants survive freezing temperatures within −10 to −20°C. Extremely hardy, the most freezing-tolerant plants are able to survive temperatures lower than −20°C by possessing a complete tolerance of freeze-dehydration-induced membrane disruption. The degree of freezing tolerance is different in woody and herbaceous perennials (e.g. conifers and Vaccinium), in overwintering annuals and perennial plants (e.g. winter cereals, winter rape, alfalfa, bromegrass) and in annual plants (e.g. Arabidopsis thaliana, spinach, cabbage).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levitt J. Responses of Plants to Environmental Stresses: Chilling, Freezing, and High Temperature Stresses, vol 1, 2nd ed. New York: Academic Press, 1980.

    Google Scholar 

  2. Griffith M, Antikainen M. Extracellular ice formation in freezing-tolerant plants. Adv Low-Temp Biol 1996; 3: 107–139.

    Article  Google Scholar 

  3. Sakai A, Larcher W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress. Berlin, Heidelberg: Springer, 1987.

    Book  Google Scholar 

  4. Thomashow MF. Arabidopsis thaliana as a model for studying mechanisms of plant cold hardiness. In: Meyrowitz EM, Somerville CR, eds. Arabidopsis. New York: Cold Spring Harbor Laboratory Press, 1994: 807–834.

    Google Scholar 

  5. Gilmour SJ, Hajela RK, Thomashow MF. Cold acclimation in Arabidopsis thaliana. Plant Physiol 1988; 87: 745–750.

    Article  CAS  Google Scholar 

  6. Kurkela S, Franck M, Heino P, Lang V, Palva ET. Cold induced gene expression in Arabidopsis thaliana L. Plant Cell Rep 1988; 7: 495–498.

    Article  CAS  Google Scholar 

  7. Lang V, Heino P, Palva ET. Low temperature acclimation and treatment with exogenous abscisic acid induce common polypeptides in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 1989; 77: 729–743.

    Article  Google Scholar 

  8. Antikainen M, Griffith M. Antifreeze protein accumulation in freezing-tolerant cereals. Physiol Plant 1997; 99: 423–432.

    Article  CAS  Google Scholar 

  9. Junttila O. Physiological responses to low temperature. Ann Sci For 1989; 46: 604–613.

    Article  Google Scholar 

  10. Kacperska A. Metabolic consequences of low temperature stress in chilling-insensitive plants. In: Li PH, ed. Low Temperature Stress Physiology in Crops. Boca Raton: CRC Press, 1989: 27–40.

    Google Scholar 

  11. Guy CL. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 1990; 41: 187–223.

    Article  CAS  Google Scholar 

  12. Hällgren J-E, Oquist G. Adaptations to low temperatures. In: Alscher RG, Cumming JR, eds. Stress Responses in Plants: Adaptation and Acclimation Mechanisms. New York: Wiley-Liss, 1990: 265–293.

    Google Scholar 

  13. Thomashow MF. Molecular genetics of cold acclimation in higher plants. Adv Genet 1990; 28: 99–131.

    Article  CAS  Google Scholar 

  14. Alberdi M, Corcuera LJ. Cold acclimation in plants. Phytochemistry 1991; 30: 3177–3184.

    Article  CAS  Google Scholar 

  15. Lee SP, Chen THH. Molecular biology of plant cold hardiness development. In: Li PH, Christersson L, eds. Advances in Plant Cold Hardiness. Boca Raton: CRC Press, 1993: 1–44.

    Google Scholar 

  16. Chen THH. Plant adaptation to low temperature stress. Can J Plant Pathol 1994; 16: 231–236.

    Article  Google Scholar 

  17. Palva ET. Gene expression under low temperature stress. In: Basra AS, ed. Stress-Induced Gene Expression in Plants. Chur, Switzerland: Harwood Acad. Publ, 1994: 103–130.

    Google Scholar 

  18. Hughes MA, Dunn MA. The molecular biology of plant acclimation to low temperature. Exp Bot 1996; 47: 291–305.

    Article  CAS  Google Scholar 

  19. Palva ET, Heino P. Molecular mechanism of plant cold acclimation and freezing tolerance. In: Li PH, Chen THH, eds. Plant Cold Hardiness. Molecular Biology, Biochemistry, and Physiology. New York: Plenum Press, 1997: 3–14.

    Google Scholar 

  20. Larcher W. Physiological Plant Ecology. Ecophysiology and Stress Physiology of Functional Groups, 3rd ed. Berlin, Heidelberg: Springer, 1995.

    Book  Google Scholar 

  21. Li PH, Sakai A. Plant Cold Hardiness and Freezing Stress: Mechanisms and Crop Implications, vol 2. New York: Academic Press, 1982.

    Google Scholar 

  22. Li PH. Plant Cold Hardiness. New York: Alan R Liss, 1987.

    Google Scholar 

  23. Li PH, Christersson L. Advances in Plant Cold Hardiness. Boca Raton: CRC Press, 1993.

    Google Scholar 

  24. Li PH, Chen THH. Plant Cold Hardiness. Molecular Biology, Biochemistry, and Physiology. New York: Plenum Press, 1997.

    Google Scholar 

  25. Steponkus PL. Role of plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 1984; 35: 543–584.

    Article  CAS  Google Scholar 

  26. Tao D-L, Li PH. Cell wall and freezing injury: a mini-review. In: Li PH, Christersson L, eds. Advances in Plant Cold Hardiness. Boca Raton: CRC Press, 1993: 195–201.

    Google Scholar 

  27. Olien CR. Freezing stresses and survival. Ann Rev Plant Physiol 1967; 18: 387–408.

    Article  Google Scholar 

  28. Pearce RS. Extracellular ice and cell shape in frost-stressed cereal leaves: a low-temperature scanning-electron-microscopy study. Planta 1988; 175: 313–324.

    Article  Google Scholar 

  29. Pearce RS, Ashworth E. Cell shape and localization of ice in leaves of overwintering wheat during frost stress in the field. Planta 1992; 188: 324–331.

    Article  Google Scholar 

  30. Brush RA, Griffith M, Mlynarz A. Characterization and quantification of intrinsic ice nucleators in winter rye (Secale cereale) leaves. Plant Physiol 1994; 104: 725–735.

    CAS  Google Scholar 

  31. Palta JP. Stress interactions at the cellular and membrane levels. Hort Sci 1990; 25: 1377–1381.

    CAS  Google Scholar 

  32. Steponkus PL. Cold acclimation and freezing injury from a perspective of the plasma membrane. In: Katterman F, ed. Environmental Injury to Plants. San Diego: Academic Press, 1990: 1–16.

    Google Scholar 

  33. Pihakaski K, Steponkus PL. Freeze-induced phase transitions in the plasma membrane of isolated protoplasts. Physiol Plant 1987; 69: 666–674.

    Article  CAS  Google Scholar 

  34. Uemura M, Steponkus PL. Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves. Plant Physiol 1989; 91: 1131–1137.

    Article  CAS  Google Scholar 

  35. Uemura M, Steponkus PL. Parallel effects of freezing and osmotic stress on the ATPase activity and protein composition of the plasma membrane of winter rye seedlings. Plant Physiol 1989: 91: 961–969.

    Article  CAS  Google Scholar 

  36. Webb MS, Steponkus PL. Freeze-induced membrane ultrastructural alterations in rye (Secale cereale) leaves. Plant Physiol 1993; 101: 955–963.

    CAS  Google Scholar 

  37. Steponkus PL, Lynch DV, Uemura M. The influence of cold acclimation on the lipid composition and cryobehaviour of the plasma membrane of isolated rye protoplasts. Phil Trans R Soc Lond; 1990: B326: 571–583.

    Article  CAS  Google Scholar 

  38. Gordon-Kamm WJ, Steponkus PL. The behavior of the plasma membrane following osmotic contraction of isolated protoplasts: implications in freezing injury. Protoplasma 1984; 123: 83–94.

    Article  Google Scholar 

  39. Steponkus PL, Lynch DV. freeze-thaw-induced destabilization of the plasma membrane and the effects of cold acclimation. J Bioenerg Biomembr 1989; 21: 21–41.

    Article  CAS  Google Scholar 

  40. Steponkus PL, Uemura M, Webb MS. A contrast of the cryostability of the plasma membrane of winter rye and spring oat. Two species that widely differ in their freezing tolerance and plasma membrane lipid composition. Adv Low-Temp Biol 1993; 2: 211–312.

    Google Scholar 

  41. Dowgert MF, Steponkus PL. Behavior of the plasma membrane of isolated protoplasts during a freeze-thaw cycle. Plant Physiol 1984; 75: 1139–1151.

    Article  CAS  Google Scholar 

  42. Gordon-Kamm WJ, Steponkus PL. Lamellar-to-hexagonal’ phase transitions in the plasma membrane of isolated protoplasts after freeze-induced dehydration. Proc Natl Acad Sci USA 1984; 81: 6373–6377.

    Article  CAS  Google Scholar 

  43. Fujikawa S, Steponkus PL. Freeze-induced alterations in the ultrastructure of the plasma membrane of rye protoplasts isolated from cold-acclimated leaves. Cryobiology 1990; 27: 665–666.

    Google Scholar 

  44. Webb MS, Uemura M, Steponkus PL. A comparison of freezing injury in oat and rye: Two cereals at the extremes of freezing tolerance. Plant Physiol 1994; 104: 467–478.

    CAS  Google Scholar 

  45. Uemura M, Joseph RA, Steponkus PL. Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 1995; 109: 15–30.

    CAS  Google Scholar 

  46. Bartolo ME, Wallner SJ, Ketchum. Comparison of freezing tolerance in cultured plant cells and their respective protoplasts. Cryobiology 1987; 24: 53–57.

    Article  Google Scholar 

  47. Singh J, Iu B, Johnson-Flanagan AM. Membrane alterations in winter rye and Brassca napus cells during lethal freezing and plasmolysis. Plant Cell Environ 1987; 10: 163–168.

    Google Scholar 

  48. Harvey DMR, Pihakaski K. Ultrastructural changes arising from freezing of leaf blade cells of rye (Secale cereale): an investigation using freeze-substitution. Physiol Plant 1989; 76: 262–270.

    Google Scholar 

  49. Palta JP. Plasma membrane ATPase as a key site of perturbation in response to freeze-thaw stress. Curr Top Plant Biochem Physiol 1989; 8: 41–68.

    CAS  Google Scholar 

  50. Johnson-Flanagan AM, Singh J. Membrane deletion during plasmolysis in hardened and non-hardened plant cells. Plant Cell Environ 1986; 9: 299–305.

    Google Scholar 

  51. Pearce RS, Willison JHM. A freeze-etch study of the effects of extracellular freezing on cellular membranes of wheat. Planta 1985; 163: 304–316.

    Article  Google Scholar 

  52. Iswari S, Palta JP. Plasma membrane ATPase activity following reversible and irreversible freezing injury. Plant Physiol 1989; 90: 1088–1095.

    Article  CAS  Google Scholar 

  53. Arora R, Palta JP. A loss in the plasma membrane ATPase activity and its recovery coincides with incipient freeze-thaw injury and postthaw recovery in onion bulb scale tissue. Plant Physiol 1991; 95: 846–852.

    Article  CAS  Google Scholar 

  54. Palta JP, Whitaker BD, Weiss LS. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species. Plant Physiol 1993; 103: 793–803.

    CAS  Google Scholar 

  55. Pihakaski-Maunsbach K, Harvey DMR. X-ray microanalytical (EDX) investigation of potassium distributions in mesophyll cells of non-acclimated and cold-acclimated rye leaves. Plant Cell Environ 1992; 15: 585–591.

    Article  CAS  Google Scholar 

  56. Huner NPA, Palta JP, Li PH, Carter JV. Anatomical changes in leaves of Puma rye in response to growth at cold-hardening temperatures. Bot Gaz 1981; 142: 55–62.

    Article  Google Scholar 

  57. Griffith M, Brown GN. Cell wall deposits in winter rye Secale cereale L. `Puma’ during cold acclimation. Bot Gaz 1982; 143: 486–490.

    Article  Google Scholar 

  58. Griffith M, Huner NPA, Espelie KE, Kolattukudy PE. Lipid polymers accumulate in the epidermis and mestome sheath cell walls during low temperature development of winter rye leaves. Protoplasma 1985; 125: 53–64.

    Article  CAS  Google Scholar 

  59. Olien CR. Interference of cereal polymers and related compounds with freezing. Cryobiology 1965; 2: 47–54.

    Article  CAS  Google Scholar 

  60. Kindel PK, Liao S-Y, Liske MR, Olien CR. Arabinoxylans from rye and wheat seed that interact with ice. Carbohydrate Res 1989; 187: 173–185.

    Article  CAS  Google Scholar 

  61. Jian LC, Sun LH, Sun DL. Glycoproteins at the cell surface in cold hardy and cold tender wheat (Triticum aestivum L.). In: Li PH, ed. Plant Cold Hardiness. New York: Alan R Liss, 1987: 59–66.

    Google Scholar 

  62. Aloni R, Griffith M. Functional xylem anatomy in root-shoot junctions of six cereal species. Planta 1991; 184: 123–129.

    Article  Google Scholar 

  63. Zâmecník J, Bieblovâ, Grospietsch M. Safety zone as a barrier to root-shoot ice propagation. Plant Soil 1994; 167: 149–155.

    Article  Google Scholar 

  64. Jian L-C, Sun L-H, Wei X-Y. Microtubule cytoskeleton in relation to plant cold hardiness. In: Li PH, Christersson L, eds. Advances in Plant Cold Hardiness. Boca Raton: CRC Press, 1993: 125–137.

    Google Scholar 

  65. Pihakaski-Maunsbach K, Puhakainen T. Effect of cold exposure on cortical microtubules of rye (Secale cereale) as observed by immunocytochemistry. Physiol Plant 1995; 93: 563–571.

    Article  CAS  Google Scholar 

  66. Gusta LV, Fowler DB. Cold resistance and injury in winter cereals. In: Mussel H, Staples RC, eds. Stress Physiology in Crop Plants. New York: John Wiley & Sons, 1979: 159–178.

    Google Scholar 

  67. Krol M, Griffith M, Huner NPA. An appropriate physiological control for environmental temperature studies: comparative growth kinetics of winter rye. Can J Bot 1984; 62: 1062–1068.

    Article  Google Scholar 

  68. White PJ, Cooper HD, Earnshaw MJ, Clarkson DT. Effects of low temperature on the development and morphology of rye (Secale cereale) and wheat (Triticum aestivum). Ann Bot 1990; 66: 559–566.

    Google Scholar 

  69. Krol M, Huner NPA. Growth and development at cold hardening temperatures. Pigment and benzoquinone accumulation in winter rye. Can J Bot 1985; 62: 716–721.

    Google Scholar 

  70. Huner N, Williams J, Krol M, Boese S, Hurry V, Lapointe L, Reynolds T. Photosynthesis, low temperature development and freezing tolerance. Curr Top Plant Biochem Physiol 1989; 8: 6–20.

    Google Scholar 

  71. Falk S, Maxwell D, Gray G, Rezansoff D, Huner N. Photosynthetic acclimation to low temperature in higher plants and algae. Curr Top Bot Res 1993; 1: 281–292.

    Google Scholar 

  72. Oquist G, Hurry VM, Huner NPA. Low-temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye. Plant Physiol 1993; 101: 245 - 250.

    Google Scholar 

  73. Hurry VM, Keerberg O, Pärnik T, Gardeström P, Oquist G. Cold-hardening results in increased activity of enzymes involved in carbon metabolism in leaves of winter rye (Secale cereale L.). Planta 1995; 195: 554–562.

    Article  CAS  Google Scholar 

  74. Strand A, Hurry V, Gustafsson P, Gardeström P. Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J 1997; 12: 605–614.

    Article  CAS  Google Scholar 

  75. Hurry VM, Strand A, Tobiæson M, Gardeström P, Oquist G. Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 1995; 109: 697–706.

    CAS  Google Scholar 

  76. Huner NPA, Oquist G, Hurry V Krol M, Falk A, Griffith M. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 1993; 37: 19–39.

    Article  CAS  Google Scholar 

  77. Oquist G, Huner NPA. Cold-hardening-induced resistance to photoinhibition of photosynthesis in winter rye is dependent upon an increased capacity for photosynthesis. Planta 1993; 189: 150–156.

    Article  Google Scholar 

  78. Gray GR, Savitch LV, Ivanov AG, Huner NPA. Photosystem II excitation pressure and development of resistance to photoinhibition. II. Adjustment to photosynthetic capacity in winter wheat and winter rye. Plant Physiol 1996; 110: 61–71.

    CAS  Google Scholar 

  79. Hurry V, Tobiæson M, Krömer S, Gardeström P, Oquist G. Mitochondria contribute to increased photosynthetic capacity of leaves of winter rye (Secale cereale L.) following cold-hardening. Plant Cell Environ 1995; 18: 69–76.

    Article  Google Scholar 

  80. Santarius KA. The mechanism of cryoprotection of biomembrane systems by carbohydrates. In: Li PH, Sakai A, eds. Plant Cold Hardiness and Freezing Stress: Mechanisms and Crop Implications. vol 2. New York: Academic Press, 1982: 475–486.

    Chapter  Google Scholar 

  81. Santarius KA, Bauer J. Cryopreservation of spinach chloroplast membranes by low-molecular-weight carbohydrates. Cryobiology 1983; 20: 83–89.

    Article  CAS  Google Scholar 

  82. Hincha DK, Schmitt JM. Cryoprotection of thylakoid membranes: I Protection by sugars. In: Dörffling K, Brettschneider B, Tantau H, Pithan K, eds. Cold Adaptation to Cool Climates. Brussels: ECSP-EEC-EAEC, 1994: 151–165.

    Google Scholar 

  83. Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 1987; 24: 324–331.

    Article  CAS  Google Scholar 

  84. Koster KL, Lynch DV. Solute accumulation and compartmentation during the cold acclimation of Puma rye. Plant Physiol 1992; 98: 108–113.

    Article  CAS  Google Scholar 

  85. Crespi MD, Zabaleta EJ, Pontis HG, Salerno GL. Sucrose synthase expression during cold acclimation in wheat. Plant Physiol 1991; 96: 887–891.

    Article  CAS  Google Scholar 

  86. Guy CL, Huber JLA, Huber SC. Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol 1992; 100: 502–508.

    Article  CAS  Google Scholar 

  87. Pontis HG. Fructans and cold stress. J Plant Physiol 1989; 134: 148–150.

    Article  CAS  Google Scholar 

  88. Suzuki M, Nass HG. Fructan in winter wheat, triticale, and fall rye cultivars of varying cold hardiness. Can J Bot 1988; 66: 1723–1728.

    CAS  Google Scholar 

  89. Olien CR, Clark JL. Changes in soluble carbohydrate composition of barley, wheat, and rye during winter. Agron J 1993; 85: 21–29.

    Article  CAS  Google Scholar 

  90. Olien CR, Lester GE. Freeze-induced changes in soluble carbohydrates of rye. Crop Sci 1985; 25: 288–290.

    Article  CAS  Google Scholar 

  91. Olien CR. An adaptive response of rye to freezing. Crop Sci 1984; 24: 51–54.

    Article  Google Scholar 

  92. Koch KE. Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 1996; 47: 509–540.

    Article  CAS  Google Scholar 

  93. Grierson C, Du J-S, de Torres Zabala M, Beggs K, Smith C, Holdsworth M, Bevan M. Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J 1994; 5: 815–826.

    Article  CAS  Google Scholar 

  94. Ohto M, Hayashi K, Isobe M, Nakamura K. Involvement of Cat+ signalling in the sugar-inducible expression of genes coding for sporamin and a-amylase of sweet potato. Plant J 1995; 7: 297–307.

    Article  CAS  Google Scholar 

  95. Reynolds S, Smith SM. Regulation of expression of the cucumber isocitrate lyase gene in cotyledons upon seed germination and by sucrose. Plant Mol Biol 1995; 29: 885–896.

    Article  CAS  Google Scholar 

  96. Monroy AF, Dhindsa RS. Low-temperature signal transduction: induction of cold-acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell 1995; 7: 321–331.

    CAS  Google Scholar 

  97. Knight H, Trewavas AJ, Knight MR. Cold calcium signalling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 1996; 8: 489–503.

    CAS  Google Scholar 

  98. Chen H-H, Li PH. Potato cold acclimation. In: Li PH, Sakai A, eds. Plant Cold Hardiness and Freezing Stress: Mechanisms and Crop Implications, vol 2. New York: Academic Press, 1982: 5–22.

    Chapter  Google Scholar 

  99. Antikainen M, Pihakaski S. Early developments in RNA, protein, and sugar levels during cold stress in winter rye (Secale cereale) leaves. Ann Bot 1994; 74: 335–341.

    Article  CAS  Google Scholar 

  100. Perras M, Sarhan F. Energy state of spring and winter wheat during cold hardening. Soluble sugars and adenine nucleotides. Physiol Plant 1984; 60: 129–132.

    Article  CAS  Google Scholar 

  101. Lynch DV, Steponkus PL. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv. Puma). Plant Physiol 1987; 83: 761–767.

    Article  CAS  Google Scholar 

  102. Steponkus PL, Uemura M, Balsamo RA, Arvinte T, Lynch DV. Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proc Natl Acad Sci USA 1988; 85: 9026–9030.

    Article  CAS  Google Scholar 

  103. Uemura M, Steponkus PL. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 1994; 104: 479–496.

    CAS  Google Scholar 

  104. Uemura M, Yoshida S. Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 1984; 75: 818–826.

    Article  CAS  Google Scholar 

  105. Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I. Genetically engineered alteration in the chilling sensitivity of plants. Nature 1992; 356: 710–713.

    Article  CAS  Google Scholar 

  106. Uemura M, Steponkus PL. Effect of cold acclimation on the lipid composition of the inner and outer membrane of the chloroplast envelope isolated from rye leaves. Plant Physiol 1997; 114: 1493–1500.

    CAS  Google Scholar 

  107. Zhou B-L, Arakawa K, Fujikawa S, Yoshida S. Cold-induced alterations in plasma membrane proteins that are specifically related to the development of freezing tolerance in cold-hardy winter wheat. Plant Cell Physiol 1994; 35: 175–182.

    CAS  Google Scholar 

  108. Larkins BA. Polyribosomes. In: Linskens HF, Jackson JF, eds. Modern Methods of Plant Analysis, New Series, vol 1 - Cell Components. Berlin, Heidelberg: Springer, 1985: 331–352.

    Google Scholar 

  109. Antikainen M, Pihakaski S. Cold-induced changes in the polysome pattern and protein synthesis in winter rye (Secale cereale) leaves. Physiol Plant 1993; 89: 111–116.

    Article  CAS  Google Scholar 

  110. Laroche A, Hopkins WG. Polysomes from winter rye seedlings grown at low temperature. I. Size class distribution, composition, and stability. Plant Physiol 1987; 85: 648–654.

    Article  CAS  Google Scholar 

  111. Perras M, Sarhan E Polysome metabolism during cold acclimation in wheat. Plant Cell Physiol 1990; 31: 1083–1089.

    CAS  Google Scholar 

  112. Graham D, Patterson BD. Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and cold acclimation. Ann Rev Plant Physiol 1982; 33: 347–372.

    Article  CAS  Google Scholar 

  113. Weiser CJ. Cold resistance and injury in woody plants. Science 1970; 169: 1269–1278.

    Article  CAS  Google Scholar 

  114. Guy CL, Niemi KJ, Brambl R. Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA 1985; 82: 3673–3677.

    Article  CAS  Google Scholar 

  115. Ougham HJ, Howarth CJ. Temperature shock proteins in plants. In: Long SP, Woodward FI, eds. Plants and Temperature. Cambridge: The Company of Biologists Ltd, 1988: 259–280.

    Google Scholar 

  116. Thomashow MF. Genes induced during cold acclimation in higher plants. Adv Low-Temp Biol 1993; 2: 183–210.

    Google Scholar 

  117. Lin C, Guo WW, Everson E, Thomashow ME Cold acclimation in Arabidopsis and wheat. A response associated with expression of related genes encoding “boiling-stable” polypeptides. Plant Physiol 1990; 94: 1078–1083.

    Article  CAS  Google Scholar 

  118. Guy CL, Haskell D. Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol 1987; 84: 872–878.

    Article  CAS  Google Scholar 

  119. Danyluk J, Sarhan F. Differential mRNA transcription during the induction of freezing tolerance in spring and winter wheat. Plant Cell Physiol 1990; 31: 609–619.

    CAS  Google Scholar 

  120. Welin B, Heino P, Nordin Henriksson K, Palva ET. Plant cold acclimation: possibilities for engineering freezing tolerance. Ag Biotech News and Information 1996; 8: 15N–22N.

    Google Scholar 

  121. Hincha DK, Heber U, Schmitt JM. Proteins from frost-hardy leaves protect thylakoids against mechanical freeze-thaw damage in vitro. Planta 1990; 180: 416–419.

    Article  CAS  Google Scholar 

  122. Lin C, Thomashow MF. A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Comm 1992; 183: 1103–1108.

    Article  CAS  Google Scholar 

  123. Hughes MA, Dunn MA, Pearce RS, White AJ, Zhang L. An abscisic-acid-responsive, low temperature barley gene has homology with a maize phospholipid transfer protein. Plant Cell Environ 1992; 15: 861–865.

    Article  CAS  Google Scholar 

  124. Neven LG, Haskell DW, Guy CL, Denslow N, Klein PA, Green LG, Silverman A. Association of 70-kilodalton heat-shock cognate proteins with acclimation to cold. Plant Physiol 1992; 99: 1362–1369.

    Article  CAS  Google Scholar 

  125. Lang V, Palva ET. The expression of a rab-related gene, rab18, is induced by abscisic acid during cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 1992; 20: 951 - 962.

    Article  CAS  Google Scholar 

  126. Wolfraim LA, Langis R, Tyson H, Dhindsa RS. cDNA sequence, expression and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells. Plant Physiol 1993; 101: 1275 - 1282.

    Article  CAS  Google Scholar 

  127. Zhu B, Chen THH, Li PH. Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii. Plant Mol Biol 1993; 21: 729–735.

    Article  CAS  Google Scholar 

  128. Lee SP, Chen THH. Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension culture. Plant Physiol 1993; 101: 1089–1096.

    Article  CAS  Google Scholar 

  129. Gilmour SJ, Lin C, Thomashow MF. Purification and properties of Arabidopsis thaliana COR (Cold-Regulated) gene polypeptides COR15am and COR6.6 expressed in Escherichia coli. Plant Physiol 1996; 111: 293–299.

    Article  CAS  Google Scholar 

  130. Uemura M, Gilmour SJ, Thomashow MF, Steponkus PL. Effects of COR6.6 and COR15am polypeptides encoded by COR (Cold-Regulated) genes of Arabidopsis thaliana on the freeze-induced fusion and leakage of liposomes. Plant Physiol 1996; 111: 313–327.

    Article  CAS  Google Scholar 

  131. Webb MS, Gilmour SJ, Thomashow MF, Steponkus PL. Effects of COR6.6 and COR15am polypeptides encoded by COR (Cold-Regulated) genes of Arabidopsis thaliana on dehydration-induced phase transitions of phospholipid membranes. Plant Physiol 1996; 111: 301–312.

    Article  CAS  Google Scholar 

  132. Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow ME Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 1996; 93: 13404–13409.

    Article  CAS  Google Scholar 

  133. Volger HG, Heber U. Cryoprotective leaf proteins. Biochim Biophys Acta 1975; 412: 335–349.

    Article  CAS  Google Scholar 

  134. Hincha DK, Heber U, Schmitt JM. Freezing ruptures thylakoid membranes in leaves, and rupture can be prevented in vitro by cryoprotective proteins. Plant Physiol Biochem 1989; 27: 795–801.

    CAS  Google Scholar 

  135. Sieg F, Schröder W, Schmitt JM, Hincha DK. Purification and characterization of a cryoprotective protein (cryoprotectin) from the leaves of cold-acclimated cabbage. Plant Physiol 1996; 111: 215–221.

    CAS  Google Scholar 

  136. Griffith M, Ala P, Yang DSC, Hon W-C, Moffatt BA. Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 1992; 100: 593–596.

    Article  CAS  Google Scholar 

  137. Marentes E, Griffith M, Mlynarz A, Brush RA. Proteins accumulate in the apoplast of winter rye leaves during cold acclimation. Physiol Plant 1993; 87: 499–507.

    Article  CAS  Google Scholar 

  138. Hon W-C, Griffith M, Chong P, Yang DSC. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol 1994; 104: 971–980.

    CAS  Google Scholar 

  139. Antikainen M, Griffith M, Zhang J, Hon W-C, Yang DSC, Pihakaski-Maunsbach K. Immunolocalization of antifreeze proteins in winter rye leaves, crowns, and roots by tissue printing. Plant Physiol 1996; 110: 845–857.

    CAS  Google Scholar 

  140. Hon W-C, Griffith M, Mlynarz A, Kwok YC, Yang DSC. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol 1995; 109: 879–889.

    Article  CAS  Google Scholar 

  141. Kader J-C. Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 1996; 47: 627–654.

    Article  CAS  Google Scholar 

  142. Urrutia ME, Duman JG, Knight CA. Plant thermal hysteresis proteins. Biochim Biophys Acta 1992; 1121: 199–206.

    Article  CAS  Google Scholar 

  143. Duman JG, Olsen TM. Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 1993; 30: 322–328.

    Article  Google Scholar 

  144. Duman JG. Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochim Biophys Acta 1994; 1206: 129–153.

    Article  CAS  Google Scholar 

  145. DeVries AL. Antifreeze glycopeptides and peptides: interactions with ice and water. Meth Enzymol 1986; 127: 293–302.

    Article  CAS  Google Scholar 

  146. Yang DSC. Protein-ice interactions: antifreeze proteins. In: Epand RM, ed. The Amphipathic Helix. Boca Raton: CRC Press, 1993: 369–391.

    Google Scholar 

  147. Sicheri F, Yang DSC. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 1995; 375: 427–431.

    Article  CAS  Google Scholar 

  148. Duman JG. Insect antifreezes and ice-nucleating agents. Cryobiology 1982; 19: 613–617.

    Article  CAS  Google Scholar 

  149. Duman JG, Wu DW, Olsen TM, Urrutia M, Tursman D. Thermal-hysteresis proteins. Adv Low-Temp Biol 1993; 2: 131–182.

    Google Scholar 

  150. Griffith M, Ewart KV. Antifreeze proteins and their potential use in frozen foods. Biotechnol Adv 1995; 13: 375–402.

    Article  CAS  Google Scholar 

  151. Knight CA, Duman JG. Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology 1986; 23: 256–262.

    Article  CAS  Google Scholar 

  152. Kurkela S, Franck M. Cloning and characterization of a cold and ABA inducible Arabidopsis gene. Plant Mol Biol 1990; 15: 137–144.

    Article  CAS  Google Scholar 

  153. Boothe JG, Sönnichsen FD, de Beus MD, Johnson-Flanagan AM. Purification, characterization, and structural analysis of a plant low-temperature-induced protein. Plant Physiol 1997; 113: 367–376.

    Article  CAS  Google Scholar 

  154. Cutler AJ, Saleem M, Kendall E, Gusta LV, Georges F, Fletcher GL. Winter flounder antifreeze protein improves the cold hardiness of plant tissues. J Plant Physiol 1989; 135: 351–354.

    Article  CAS  Google Scholar 

  155. Georges F, Saleem M, Cutler AJ. Design and cloning of a synthetic gene for the flounder antifreeze protein and its expression in plant cells. Gene 1990; 91: 159–165.

    Article  CAS  Google Scholar 

  156. Hightower R, Baden K, Penzes E, Lund P, Dunsmuir P. Expression of antifreeze proteins in transgenic plants. Plant Mol Biol 1991; 17: 1013–1021.

    Article  CAS  Google Scholar 

  157. Kenward KD, Altschuler M, Hildebrand D, Davies PL. Accumulation of type I fish antifreeze protein in transgenic tobacco is cold-specific. Plant Mol Biol 1993; 23: 377–385.

    Article  CAS  Google Scholar 

  158. Hincha DK, DeVries AL, Schmitt JM. Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes - comparison with cryotoxic sugar acids. Biochim Biophys Acta 1993; 1146: 258–264.

    Article  CAS  Google Scholar 

  159. Wallis JG, Wang, H, Guerra DJ. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol Biol 1997; 35: 323–330.

    Article  CAS  Google Scholar 

  160. Stinzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B. Plant “pathogenesis-related” proteins and their role in defense against pathogens. Biochimie 1993; 75: 687–706.

    Article  Google Scholar 

  161. Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K. Plant chitinases. Plant J 1993; 3: 31–40.

    Article  CAS  Google Scholar 

  162. Tronsmo AM, Gregersen P, Hjeljord L, Sandal T, Bryngelsson T, Collinge DB. Cold-induced disease resistance. In: Fritig B, Legrand M, eds. Mechanisms of Plant Defense Responses. Dordrecht, The Netherlands: Kluwer Acad Publ, 1993: 369.

    Chapter  Google Scholar 

  163. Gatschet MJ, Taliaferro CM, Porter DR, Anderson MP, Anderson JA, Jackson KW. A cold-regulated protein from bermudagrass crowns is a chitinase. Crop Sci 1996; 36: 712–718.

    Article  CAS  Google Scholar 

  164. Zhu B, Chen THH, Li PH. Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for an osmotin-like protein. Planta 1996; 198: 70–77.

    Article  CAS  Google Scholar 

  165. Hincha DK, Meins Jr F, Schmitt JM. (3-1,3-Glucanase is cryoprotective in vitro and is accumulated in leaves during cold acclimation. Plant Physiol 1997; 114: 1077–1083.

    CAS  Google Scholar 

  166. Pihakaski-Maunsbach K, Griffith M, Antikainen M, Maunsbach A. Immunogold localization of glucanase-like antifreeze protein in cold acclimated winter rye. Protoplasma 1996; 191: 115–125.

    Article  CAS  Google Scholar 

  167. Rohringer R, Ebrahim-Nesbat F, Wolf G. Proteins in intercellular washing fluids from leaves of barley (Hordeum vulgare L.). J Exp Bot 1983; 34: 1589–1605.

    Article  CAS  Google Scholar 

  168. Ye Z-H, Varner JE. Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell 1991; 3: 23–37.

    CAS  Google Scholar 

  169. Rubinsky B, Arav A, DeVries AL. The cryoprotective effect of antifreeze glycopeptides from antarctic fishes. Cryobiology 1992; 29: 69–79.

    Article  CAS  Google Scholar 

  170. Cloutier Y, Siminovitch D. Correlation between cold-and drought-induced frost hardiness in winter wheat and rye varieties. Plant Physiol 1982; 69: 256–258.

    Article  CAS  Google Scholar 

  171. Siminovitch D, Cloutier Y. Twenty-four-hour induction of freezing and drought tolerance in plumules of winter rye seedlings by desiccation stress at room temperature in the dark. Plant Physiol 1982; 69: 250–255.

    Article  CAS  Google Scholar 

  172. Chen THH, Gusta LV. Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 1983; 73: 71–75.

    Article  CAS  Google Scholar 

  173. Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress. Curr Opin Biotechnol 1996; 7: 161–167.

    Article  CAS  Google Scholar 

  174. Close TJ. Dehydrins: A commonalty in the response of plants to dehydration and low temperature. Physiol Plant 1997; 100: 291–296.

    Article  CAS  Google Scholar 

  175. Close TJ, Fenton RD, Yang A, Asghar R, DeMason DA, Crone DE, Meyer NC, Moonan R. Dehydrin: the protein. In: Close TJ, Bray EA, eds. Plant Responses to Cellular Dehydration During Environmental Stress. Rockville: An American Society of Plant Physiologists Series, Current Topics in Plant Physiology, 1993; 10: 104–118.

    Google Scholar 

  176. Houde M, Danyluk J, Laliberté JF, Rassart É, Dhindsa RS, Sarhan F. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol 1992; 99: 1381–1387.

    Article  CAS  Google Scholar 

  177. Houde M, Dhindsa RS, Sarhan F. A molecular marker to select for freezing tolerance in Gramineae. Mol Gen Genet 1992; 234: 43–48.

    CAS  Google Scholar 

  178. Danyluk J, Houde M, Rassart É, Sarhan F. Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Lett 1994; 344: 20–24.

    Article  CAS  Google Scholar 

  179. Robertson AJ, Weninger A, Wilen RW, Fu P, Gusta LV. Comparison of dehydrin gene expression and freezing tolerance in Bromus inermis and Secale cereale grown in controlled environments, hydroponics, and the field. Plant Physiol 1994; 106: 1213–1216.

    CAS  Google Scholar 

  180. Houde M, Daniel C, Lachapelle M, Allard F, Laliberté S, Sarhan F. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 1995; 8: 583–593.

    Article  CAS  Google Scholar 

  181. Stanca AM, Crosatti C, Grossi M, Lacerenza NG, Rizza F, Cattivelli L. Molecular adaptation of barley to cold and drought conditions. Euphytica 1996; 92: 215–219.

    Article  Google Scholar 

  182. Sarhan F, Ouellet F, Vasquez-Tello A. The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol Plant 1997; 101: 439–445.

    Article  CAS  Google Scholar 

  183. Neven LG, Haskell DW, Hofig A, Li Q-B, Guy CL. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol 1993; 21: 291–305.

    Article  CAS  Google Scholar 

  184. Kazuoka T, Oeda K. Purification and characterization of COR85-oligomeric complex from cold-acclimated spinach. Plant Cell Physiol 1994; 35: 601–611.

    CAS  Google Scholar 

  185. Gilmour SJ, Artus NN, Thomashow MF. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol 1992; 18: 13–21.

    Article  CAS  Google Scholar 

  186. Welin BV, Olson A, Palva ET. Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana L. Heyhn. Plant Mol Biol 1995; 29: 391–395.

    Article  CAS  Google Scholar 

  187. Welin BV, Olson A, Nylander M, Palva ET. Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol 1994; 26: 131–144.

    Article  CAS  Google Scholar 

  188. Nishida I, Murata N. Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 1996; 47: 541–568.

    Article  CAS  Google Scholar 

  189. Murata N, Los DA. Membrane fluidity and temperature perception. Plant Physiol 1997; 115: 875–879.

    CAS  Google Scholar 

  190. Murata N. Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 1983; 24: 81–86.

    CAS  Google Scholar 

  191. Moon BY, Higashi S-I, Gombos Z, Murata N. Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 1995; 92: 6219–6223.

    Article  CAS  Google Scholar 

  192. Somerville C. Direct tests of the role of membrane lipid composition in low-temperatureinduced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc Natl Acad Sci USA 1995; 92: 6215–6218.

    Article  CAS  Google Scholar 

  193. Wu J, Lightner J, Warwick N, Browse J. Low-temperature damage and subsequent recovery of fabl mutant Arabidopsis exposed to 2°C. Plant Physiol 1997; 113: 347–356.

    Article  CAS  Google Scholar 

  194. Kanervo E, Tasaka Y, Murata N, Aro E-M. Membrane lipid unsaturation modulates processing of the photosystem II reaction-center protein D1 at low temperatures. Plant Physiol 1997; 114: 841–849.

    Article  CAS  Google Scholar 

  195. White AJ, Dunn MA, Brown K, Hughes MA. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot 1994; 45: 1885–1892.

    Article  CAS  Google Scholar 

  196. Houlston CE, Pearce RS, Dunn MA, Hughes MA. In situ localisation of expression of cold-induced barley genes. J Exp Bot 1995; 46 (suppl): 67.

    Google Scholar 

  197. Thoma S, Kaneko Y, Somerville C. A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J 1993; 3: 427–436.

    Article  CAS  Google Scholar 

  198. Pyee J, Yu H and Kolattukudy PE. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys 1994; 311: 460–468.

    Article  CAS  Google Scholar 

  199. Pyee J and Kolattukudy PE. The gene for the major cuticular wax-associated protein and three homologous genes from broccoli (Brassica oleracea) and their expression patterns. Plant J 1995; 7: 49–59.

    Article  CAS  Google Scholar 

  200. Molina A, Garcia-Olmedo F. Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J 1993; 4: 983–991.

    Article  CAS  Google Scholar 

  201. Brule-Babel AL, Fowler DB. Genetic control of cold hardiness and vernalization requirement in rye. Genome 1989; 32: 19–23.

    Article  Google Scholar 

  202. Mäntylä E. Molecular mechanisms of cold acclimation and drought tolerance in plants. PhD Thesis. Uppsala: Swedish Univ Agric Sci, 1997.

    Google Scholar 

  203. Gilmour SJ, Thomashow MF. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol 1991; 17: 1233–1240.

    Article  CAS  Google Scholar 

  204. Nordin K, Vahala T, Palva ET. Differential expression of two related, low-temperatureinduced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 1993; 21: 641–653.

    Article  CAS  Google Scholar 

  205. Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 1994; 6: 251–264.

    CAS  Google Scholar 

  206. Skriver K, Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 1990; 2: 503–512.

    CAS  Google Scholar 

  207. Bohnert HJ, Nelson DE, Jensen RG. Adaptations to environmental stresses. Plant Cell 1995; 71099–71111.

    Google Scholar 

  208. de Vetten NC, Ferl RJ. Transcriptional regulation of environmentally inducible genes in plants by an evolutionary conserved family of G-box binding factors. Int J Biochem 1994; 26: 1055–1068.

    Article  CAS  Google Scholar 

  209. Dolferus R, De Bruxelles G, Dennis ES, Peacock WJ. Regulation of the Arabidopsis Adh gene by anaerobic and other environmental stresses. Ann Bot 1994; 74: 301–308.

    Article  CAS  Google Scholar 

  210. Horwath DP, McLarney BK, Thomashow MF. Regulation of Arabidopsis thaliana L. (Heyn) cor78 in response to low temperature. Plant Physiol 1993; 103: 1047–1053.

    Article  Google Scholar 

  211. Wilhelm KS, Thomashow MF. Arabidopsis thaliana corl5b, an apparent homologue of corl5a, is strongly responsive to cold and ABA, but not drought. Plant Mol Biol 1993; 23: 1073–1077.

    Article  CAS  Google Scholar 

  212. Jarillo JA, Capel JC, Leyva A, Martinez-Zapater JN, Salinas J. Two related low-temperatureinducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins, a family of putative kinase regulators. Plant Mol Biol 1994; 25: 693–704.

    Article  CAS  Google Scholar 

  213. Capel J, Jarillo JA, Salinas J, Martinez-Zapater JM. Two homologous low-temperatureinducible genes from Arabidopsis encode highly hydrophobic proteins. Plant Physiol 1997; 115: 569–576.

    Article  CAS  Google Scholar 

  214. de Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R. Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 1996; 111: 381–391.

    Article  CAS  Google Scholar 

  215. Merlot S, Giraudat J. Genetic analysis of abscisic acid signal transduction. Plant Physiol 1997; 114: 751–757.

    Article  CAS  Google Scholar 

  216. Baker SS, Wilhelm KS, Thomashow MF. The 5’-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought-, and ABA-regulated gene expression. Plant Mol Biol 1994; 24: 701–713.

    Article  CAS  Google Scholar 

  217. Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 1997; 94: 1035–1040.

    Article  CAS  Google Scholar 

  218. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 1998; 280: 104–106.

    Article  CAS  Google Scholar 

  219. Olson A. Molecular responses to cold stress. Regulation of low temperature-induced genes in Arabidopsis thaliana. PhD Thesis. Uppsala: Swedish Univ Agric Sci, 1997.

    Google Scholar 

  220. Tähtiharju S, Sangwan V, Monroy AF, Dhindsa AF, Borg M. The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta 1997; 203: 442–447.

    Article  Google Scholar 

  221. Harmon AC, Lee J-Y, Yoo B-C, Shao J. Plant membrane-associated protein kinases: proposed great communicators. In: Smallwood M, Knox JP, Bowles DJ, eds. Membranes: Specialized Functions in Plants. Oxford: BIOS Scientific Publ Ltd, 1996: 137–150.

    Google Scholar 

  222. Hong SW, Jon JH, Kwak JM, Nam HG. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol 1997; 113: 1203–1212.

    Article  CAS  Google Scholar 

  223. Ayres PG, West HM. Stress responses in plants infected by pathogenic and mutualistic fungi. In: Fowden L, Mansfield T, Stoddart J, eds. Plant Adaptation to Environmental Stress. London: Chapman & Hall, 1993: 295–311.

    Google Scholar 

  224. Tronsmo AM. Predisposing effects of low temperature on resistance to winter stress factors in grasses. Acta Agric Scand 1984; 34: 210–220.

    Article  Google Scholar 

  225. Tronsmo AM. Induced resistance to biotic stress factors in grasses by frost hardening. In: Kaurin A, Junttila O, eds. Plant Production in the North. Tromso: Norwegian Univ Press, 1985: 127–133.

    Google Scholar 

  226. Gaudet DA. Progress towards understanding interactions between cold hardiness and snow mold resistance and development of resistant cultivars. Can J Plant Pathol 1994; 16: 241–246.

    Article  Google Scholar 

  227. Collinge DB, Gregersen PL, Thordal-Christensen H. The induction of gene expression in response to pathogenic microbes. In: Basra AS, ed. Mechanisms of Plant Growth and Improved Productivity. Modern Approaches. New York: Marcel Dekker, Inc, 1994: 391–433.

    Google Scholar 

  228. Benhamou N, Grenier J, Asselin A, Legrand M. Immunogold localization of (3-1.3-glucanases in two plants infected by vascular wilt fungi. Plant Cell 1989; 1: 1209–1221.

    CAS  Google Scholar 

  229. Wubben JP, Eijkelboom CA, De Wit PJGM. Accumulation of pathogenesis-related proteins in the epidermis of tomato leaves infected by Cladosporium fulvum. Neth J Plant Pathol 1993; 99 (3 suppl): 231–239.

    Article  CAS  Google Scholar 

  230. Hincha DK. Rapid induction of frost hardiness in spinach seedlings under salt stress. Planta 1994; 194: 274–278.

    Article  CAS  Google Scholar 

  231. Zhu B, Chen THH, Li PH. Expression of three osmotin-like genes in response to osmotic stress and fungal infection in potato. Plant Mol Biol 1995; 28: 729–735.

    Article  Google Scholar 

  232. Zhu B, Chen THH, Li PH. Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol 1995; 108: 929–937.

    Article  CAS  Google Scholar 

  233. Yun D-J, D’Urzo MP, Abad L, Takeda S, Salzman R, Chen Z, Lee H, Hasegawa PM, Bressan RA. Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform. Plant Physiol 1996; 111: 1219–1225.

    Article  CAS  Google Scholar 

  234. Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 1997; 100: 241–254.

    Article  CAS  Google Scholar 

  235. Bridger GM, Yang W, Falk DE, McKersie BD. Cold acclimation increases tolerance to activated oxygen in winter cereals. J Plant Physiol 1994; 144: 235–240.

    Article  CAS  Google Scholar 

  236. Asada K. Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM, eds. Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. Boca Raton: CRC Press, 1994: 77–104.

    Google Scholar 

  237. Inzé D, Van Montagu M. Oxidative stress in plants. Curr Opin Biotechnol 1995; 5: 153–158.

    Article  Google Scholar 

  238. Kendall EJ, McKersie BD. Free radical and freezing injury to cell membranes of winter wheat. Physiol Plant 1989; 76: 86–94.

    Article  CAS  Google Scholar 

  239. McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inzé D, D’Halluin K, Botterman J. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 1993; 103: 1155–1163.

    Article  CAS  Google Scholar 

  240. McKersie BD, Bowley SR, Harjanto E, Leprince O. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 1996; 111: 1177–1181.

    CAS  Google Scholar 

  241. Wu G, Shortt BJ, Lawrence EB, Leon J, Fitzsimmons KC, Levine EB, Raskin I, Shah DM. Activation of host defence mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 1997; 115: 427–435.

    CAS  Google Scholar 

  242. Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: Relationships in green cells. Physiol Plant 1997; 100: 224–233.

    Article  CAS  Google Scholar 

  243. Huner NPA, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG, Falk S. Sensing environmental temperature change through imbalances between energy supply and energy consumption: Redox state of photosystem II. Physiol Plant 1996; 98: 358–364.

    Article  CAS  Google Scholar 

  244. Gray GR, Chauvin L-P, Sarhan F, Huner NPA. Cold acclimation and freezing tolerance. A complex interaction of light and temperature. Plant Physiol 1997; 114: 467–474.

    CAS  Google Scholar 

  245. Hincha DK, Sonnewald U, Willmitzer L, Schmitt JM. The role of sugar accumulation in leaf frost hardiness - investigation with transgenic tobacco expressing a bacterial pyrophosphatase or a yeast invertase gene. J Plant Physiol 1996; 147: 604–610.

    Article  CAS  Google Scholar 

  246. Lang V. The role of ABA and ABA-induced gene expression in cold acclimation of Arabidopsis thaliana. PhD Thesis. Uppsala: Swedish Univ Agric Sci, 1993.

    Google Scholar 

  247. Calkins J, Swanson BT. The distinction between living and dead plant tissue - viability tests in cold hardiness research. Cryobiology 1990; 27: 194–211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hiilovaara-Teijo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hiilovaara-Teijo, M., Palva, E.T. (1999). Molecular responses in cold-adapted plants. In: Margesin, R., Schinner, F. (eds) Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06285-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06285-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08445-4

  • Online ISBN: 978-3-662-06285-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics