Advertisement

Lake ice microbial communities in alpine and antarctic lakes

  • R. Psenner
  • B. Sattler
  • A. Wille
  • C. H. Fritsen
  • J. C. Priscu
  • M. Felip
  • J. Catalan

Abstract

The observation that metabolic processes are reduced or completely inhibited at freezing temperatures has influenced microbial ecologists and limnologists, who have commonly concentrated on warm seasons and temperate habitats. High altitude and high latitude sites are not easily accessible and conducting research at low temperatures is not a trivial matter. However, methods for in-situ studies of microbial processes such as bacterial growth and production have been improved to a degree that allows the study of very oligotrophic systems at low temperatures. Furthermore, the construction of observatories and field stations has increased accessibility to high alpine and antarctic ecosystems, which has largely extended our knowledge of microbial life in cold environments.

Keywords

Alpine Lake Antarctic Lake Polar Desert High Mountain Lake Lithogenic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrigo KR, Worthen DL, Lizotte MP, Dixon P, Dieckmann G. Primary production in antarctic sea ice. Science 1997; 276: 394–397.CrossRefGoogle Scholar
  2. 2.
    Wharton RA, McKay CP, Clow GD, Anderson DT. Perennial ice covers and their influence on Antarctic lake ecosystems. In: Green WJ, Friedmann EI, eds. Physical and Biogeochemical Processes in Antarctic Lakes. Antarctic Res Ser, vol 59. Washington DC: Am Geophys Union, 1993: 53–70.CrossRefGoogle Scholar
  3. 3.
    Psenner R. Alkalinity generation in a soft-water lake: Watershed and in-lake processes. Limnol Oceanogr 1988; 33: 1463–1475.CrossRefGoogle Scholar
  4. 4.
    Wögrath S, Psenner R. Seasonal, annual and long-term variability in the water chemistry of a remote high mountain lake: acid rain versus natural changes. Water, Air Soil Pollution 1995; 85: 359–364.CrossRefGoogle Scholar
  5. 5.
    Wharton RA, Jr, McKay CP, Simmons GM, Jr, Parker BC. Oxygen budget of a perennially ice-covered Antarctic lake. Limnol Oceanogr 1986; 31: 437–443.CrossRefGoogle Scholar
  6. 6.
    Catalan J. The winter cover of a high-mountain lake (Estany Redo, Pyrenees). Water Resour Res 1989; 25: 519–527.CrossRefGoogle Scholar
  7. 7.
    Meguro H. Plankton ice in the Antarctic Ocean. Antarctic Rec 1962; 14: 192–199.Google Scholar
  8. 8.
    Fritsen CH, Adams EE, McKay CP, Priscu JC. Permanent ice covers of the McMurdo Dry Valley Lakes, Antarctica: Liquid water content. In: Priscu JC, ed. Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Res Ser, vol 72. Washington DC: Am Geophys Union, 1998: 269–280.CrossRefGoogle Scholar
  9. 9.
    Andreatta S. Respiratorie activity of bacterial cells in a high mountain lake (Gossenköllesee, Tirol) during icebreak: quantification of tetrazolium-reduction image analysis. University of Innsbruck: Msc Thesis, 1997: 1–53 (in German).Google Scholar
  10. 10.
    Jones HG, Quellet M. Mecanismes de translocation de matiére chimique et microbiologique dans la couverture de glace de quelques lacs. Eau Qué 1983; 16: 71–80.Google Scholar
  11. 11.
    Squyres SW, Anderson DW, Neddell SS, Wharton RA Jr. Lake Hoare, Antarctica: Sedimentation through a thick perennial ice cover. Sedimentology 1991; 38: 363–379.CrossRefGoogle Scholar
  12. 12.
    Adams EE, Priscu JC, Fritsen CH, Smith SR, Brackman SL. Permanent ice covers of the McMurdo Dry Valley Lakes, Antarctica: bubble formation and metamorphism. In: Priscu JC, ed. Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Res Ser, vol 72. Washington DC: Am Geophys Union, 1998: 281–296.CrossRefGoogle Scholar
  13. 13.
    Clow GD, McKay CP, Simmons RA. Climatological observations and predicted sublimation rates at Lake Hoare, Antarctica. J Climate 1988; 7: 715–728.CrossRefGoogle Scholar
  14. 14.
    Alfreider A, Pernthaler J, Amann R, Sattler B, Glöckner FO, Wille A, Psenner R. Commnity analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl Environ Microbiol 1996; 62: 2138–2144.Google Scholar
  15. 15.
    Felip M, Sattler B, Psenner R, Catalan J. Highly acticve microbial communities in the ice and snow cover of high mountain lakes. Appl Environ Microbiol 1995; 61: 2394–2401.Google Scholar
  16. 16.
    Pomeroy LR, Wiebe WJ, Deibel D, Thompson RJ, Rowe GT, Pakulski JD. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar Ecol Prog Ser 1991; 75: 143–159.CrossRefGoogle Scholar
  17. 17.
    Wiebe WJ, Sheldon Jr. WM, Pomeroy LR. Bacterial growth in the cold: evidence for an enhanced substrate requirement. Appl Environ Microbiol 1992; 58: 359–365.Google Scholar
  18. 18.
    Felip M, Pace ML, Cole JJ. Regulation of planktonic bacterial growth rates: the effect of temperature and resources. Microb Ecol 1996; 3: 15–28.Google Scholar
  19. 19.
    Kaufmann RS, Smith KL, Jr, Baldwin RJ, Glatts RC, Robison BH, Reisenbichler KR. Effects of seasonal pack ice on the distribution of macrozooplankton and micronekton in the northwestern Weddell Sea. Mar Biol 1995; 124: 387–397.CrossRefGoogle Scholar
  20. 20.
    Simmons GM, Vestal JR, Wharton RA. Environmental regulators of microbial activity in continental Antartic lakes. In: Green WJ, Friedmann, EI, eds. Physical and Biogeochemical Processes in Antarctic Lakes. Antarctic Res Ser, vol 59. Washington DC: Am Geophys Union, Antarctic Res Ser, 1993: 165–195CrossRefGoogle Scholar
  21. 21.
    Lizotte MP, Priscu JC. Pigment analsysis of the distribution, succession, and fate of phytoplankton in the McMurdo Dry Valley Lakes of Antarctica. In: Priscu JC, ed. Ecosystem Dynamics in a Polar Desert. The McMurdo Dry Valleys, Antarctica. Antarctic Res Ser, vol 72. Washington DC: Am Geophys Union, 1998: 229–240.CrossRefGoogle Scholar
  22. 22.
    Takacs CD, Priscu JC. Bacterioplankton dynamics in the McMurdo Dry Valley Lakes, Antarctica: Production and biomass loss over four seasons. Microb Ecol 1998 (in press).Google Scholar
  23. 23.
    James MR, Hall JA, Laybourn-Perry. Protozooplankton and microzooplankton ecology on lakes of the Dry Valleys, Southern Victoria Land. In: Priscu JC, ed. Ecosystem Dynamics in a Polar Desert. The McMurdo Dry Valleys, Antarctica. Antarctic Res Ser, vol 72. Washington DC: Am Geophys Union, 1998: 255–267.CrossRefGoogle Scholar
  24. 24.
    Priscu JC. Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshwater Biol 1995; 34: 215–227.CrossRefGoogle Scholar
  25. 25.
    Wing K, Priscu JC. 1993. Microbial communities in the permanent ice cap of lake Bonney, Antarctica: Relationships among chlorophyll-a, gravel, and nutrients. Antarctic J US 1993; 28: 247–249.Google Scholar
  26. 26.
    Fritsen CH, Priscu JC. Cyanobacterial assemblages in permanent ice covers of Antarctic lakes: Distribution, growth rate and temperature response of photosynthesis. J Phycol 1998; 34: 587–597.CrossRefGoogle Scholar
  27. 27.
    Paerl HW, Priscu JC. Microbial phototrophic, heterotrophic and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney. Microb Ecol 1998 (in press).Google Scholar
  28. 28.
    Holm-Hansen O. Viability of blue-green andgreen algae after freezing. Physiol Plant 1963; 16: 530–540.CrossRefGoogle Scholar
  29. 29.
    Hawes I, Howard-Williams C, Vincent W. Dessication and recovery of Antarctic cyanobacterial mats. Polar Biol 1992; 12: 587–594.CrossRefGoogle Scholar
  30. 30.
    Fritsen CH, Priscu JC. Photosynthetic characteristics of cyanobacteria in permanent ice-covers on lakes in the McMurdo Dry Valleys, Antarctica. Antarctic J US 1996; 31: 216–218.Google Scholar
  31. 31.
    Priscu JC, Fritsen CH. Antarctic lake ice microbial consortia: origin, distribution and growth physiology. Antarctic J US 1996; 31: 223–224.Google Scholar
  32. 32.
    Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckey JC. Perennial Antarctic lake ice: An oasis for life in a polar desert. Science 1998; 280: 2095–2098.CrossRefGoogle Scholar
  33. 33.
    Hobbie JE, Daley RJ, Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 1977; 33: 1225–1228.Google Scholar
  34. 34.
    Sommaruga R, Obernosterer I, Herndl GJ, Psenner R. Inhibitory effect of solar radiation on thymidine and leucine incorporation by freshwater and marine bacterioplankton. Appl Environ Microbiol 1997; 63: 4178–4184.Google Scholar
  35. 35.
    Sommaruga-Wögrath S, Koinig KA, Schmidt R, Sommaruga R, Tessadri R, Psenner R. Temperature effects on the acidity of remote alpine lakes. Nature 1997; 387: 64–67.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • R. Psenner
    • 1
  • B. Sattler
    • 1
  • A. Wille
    • 1
  • C. H. Fritsen
    • 2
  • J. C. Priscu
    • 2
  • M. Felip
    • 3
  • J. Catalan
    • 3
  1. 1.Institute of Zoology and LimnologyUniversity of InnsbruckInnsbruckAustria
  2. 2.Department of Biological SciencesMontana State UniversityBozemanUSA
  3. 3.Department of Ecology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations