Advertisement

Plasmids from antarctic bacteria

  • M. L. Tutino
  • B. Fontanella
  • M. A. Moretti
  • A. Duilio
  • G. Sannia
  • G. Marino

Abstract

In recent years a growing interest has been addressed to cold-adapted microorganisms, because of their biotechnological applications.1,2 The knowledge of the structural and functional features that justify the unusual activity of psychrophilic enzymes at low temperature represents the main goal of many comparative analyses;3–6 indeed, this information is instrumental toward an exploitation of their biotechnological potential as suitable catalysts in future applications, like those in the dairy industry,7–8 in “cold washing” or in any situation where high activity at low temperature and an easy inactivation of added catalysts by moderate heating are required.

Keywords

Plasmid Replication Antarctic Bacterium Extrachromosomal Element Psychrophilic Enzyme Antarctic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Russell NJ. Physiology and molecular biology of psychrophilic micro-organisms. In Herbert RA, Sharp RJ, eds. Molecular Biology and Biotechnology of Extremophiles. New York: Chapman and Hall, 1992: 203–221.CrossRefGoogle Scholar
  2. 2.
    Gounot AM. Bacterial life at low temperature: physiological aspects and biotechnological implications. J Appl Bacteriol 1991; 71: 386–397.CrossRefGoogle Scholar
  3. 3.
    Aittaleb M, Hubner R, Lamotte-Brasseur J, Gerday C. Cold adaptation parameters derived from c-DNA sequencing and molecular modelling of elastase from Antarctic fish Notothenia neglecta. Protein Engin 1997; 10: 475–477.CrossRefGoogle Scholar
  4. 4.
    Davail S, Feller G, Narinx E, Gerday C. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41. J Biol Chem 1994; 26: 17448–17453.Google Scholar
  5. 5.
    Feller G, Payan F, Theys F, Qian M, Haser R, Gerday C. Stability and structural analysis of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem 1994; 222: 441–447.CrossRefGoogle Scholar
  6. 6.
    Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C. Enzymes from cold-adapted microorganisms. The class C (3-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 1997; 244: 186–191.CrossRefGoogle Scholar
  7. 7.
    Burgess K, Shaw M. Dairy. In: Godfrey T, Reichelt J, eds. Industrial Enzymology. The Application of Enzymes in Industry. London: Macmillan, 1983: 260–283.Google Scholar
  8. 8.
    Sharp RJ, Munster MJ. Biotechnological implications for micro-organisms from extreme environments. In: Herbert RA, Cod GA, eds. Microbes in Extreme Environments. London: Academic Press, 1986: 215–295.Google Scholar
  9. 9.
    Dahlberg C, Linberg C, Torsvik VL, Hermansson M. Conjugative plasmids isolated from bacteria in marine environments show various degrees of homology to each other and are not closely related to well-characterized plasmids. Appl Environ Microbiol 1997; 63: 46924697.Google Scholar
  10. 10.
    Sobecky PA, Mincer TJ, Chang MC, Helinski DR. Plasmids isolated from marine sediment microbial communities contain replication and incompatibility regions unrelated to those of known plasmid groups. Appl Environ Microbiol 1997; 63: 888–895.Google Scholar
  11. 11.
    Feller G, Thiry M, Arpigny JL, Gerday C. Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144. Gene 1991; 102: 111–115.CrossRefGoogle Scholar
  12. 12.
    Gerike U, Danson MJ, Russell NJ, Hough DW. Sequencing and expression of the gene encoding a cold-active citrate synthase from an Antarctic bacterium, strain DS2–3R. Eur J Biochem 1997; 248: 49–57.CrossRefGoogle Scholar
  13. 13.
    Morita RY. Psychrophilic bacteria. Bacteriol Rev 1975; 39: 144–167.Google Scholar
  14. 14.
    Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press, 1989.Google Scholar
  15. 15.
    Clewell D.B. Nature of Col El plasmid replication in Escherichia coli in the presence of the chloramphenicol. J Bacteriol 1972; 110: 667–676.Google Scholar
  16. 16.
    Cesareni G, Banner DW. Regulation of plasmid copy number by complementary RNAs. Trends Biochem Sci 1985; 10: 303–306.CrossRefGoogle Scholar
  17. 17.
    Scott JR. Regulation of plasmid replication. Microbiol Rev 1984; 48: 1–23.Google Scholar
  18. 18.
    Feller G, Narinx E, Arpigny JL, Zekhnini Z, Swings J, Gerday C. Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. Appl Microbiol Biotechnol 1994; 41: 477–479.CrossRefGoogle Scholar
  19. 19.
    Feller G, Thiry M, Gerday C. Nucleotide sequence of the lipase gene lip2 from the Antarctic psychrotrophic Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol 1991; 10: 381–388.CrossRefGoogle Scholar
  20. 20.
    Feller G, Thiry M, Arpigny JL, Mergeay M, Gerday C. Lipases from psychrotrophic antarctic bacteria. FEMS Microbiol Lett 1990; 66: 239–244.CrossRefGoogle Scholar
  21. 21.
    Novick RP. Plasmid incompatibility. Microbiol Rev 1987; 51: 381–395.Google Scholar
  22. 22.
    Gruss A, Ehrlich D. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol Rev 1989; 53: 231–241.Google Scholar
  23. 23.
    Koepsel RR, Murray RW, Rosenblum WD, Khan SA. The replication initiator protein of plasmid pT181 has sequence-specific endonuclease and topoisomerase-like activities. Proc Natl Acad Sci USA 1985; 82: 6845–6849.CrossRefGoogle Scholar
  24. 24.
    Wetzel R. Mutations and off-pathway aggregation of proteins. Trends Biotechnol 1994; 12: 193–198.CrossRefGoogle Scholar
  25. 25.
    Georgiou G, Valax P, Ostermeier M, Horowitz PM. Folding and aggregation of TEM 13-lactamase: analogies with the formation of inclusion bodies in Escherichia coli. Protein Sci 1994; 3: 1953–1960.CrossRefGoogle Scholar
  26. 26.
    Georgiou G, Valax P. Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 1996; 7: 190–197.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • M. L. Tutino
    • 1
  • B. Fontanella
    • 1
  • M. A. Moretti
    • 1
  • A. Duilio
    • 1
  • G. Sannia
    • 1
  • G. Marino
    • 1
  1. 1.Department of Organic and Biological ChemistryUniversity of Naples Federico IINaplesItaly

Personalised recommendations