Advertisement

Cold enzymes: a hot topic

  • C. Gerday
  • M. Aittaleb
  • J. L. Arpigny
  • E. Baise
  • J. P. Chessa
  • J. M. François
  • G. Garsoux
  • I. Petrescu
  • G. Feller

Abstract

Chemical reaction rates often show a strong temperature dependency and a decrease of 10°C from room temperature typically divides the rate by a factor oscillating between 1.5 and 4. The decrease of the rate constant k indeed obeys an equation proposed by Svante Arrhenius as early as in 1889:
$$K = A{e^{ - Ea/RT}}$$
(1)
in which E a is the activation energy, R the gas constant (8.31 kJ mol−1) and T the temperature in Kelvin.

Keywords

Phosphoglycerate Kinase Cold Adaptation Antarctic Fish Bovine Trypsin Mesophilic Counterpart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hochachka PW, Somero GN. Temperature adaptation. In: Hochachka PW, Somero GN, eds. Biochemical Adaptation. Princeton Univ Press, 1984: 355 - 449.Google Scholar
  2. 2.
    Baldwin J, Hochachka PW. Functional significance of isoenzymes in thermal acclimatization: acetylcholine esterase from trout brain. Biochem J 1970; 116: 883 - 887.Google Scholar
  3. 3.
    Jagdale BG, Gordon R. Effect of temperature on the activities of glucose-6-phosphate dehydrogenase and hexokinase in ertopathogenic Nematodes. Comp Biochem Physiol 1997; 118A: 1151 - 1156.CrossRefGoogle Scholar
  4. 4.
    Cowan DA. Enzymes from thermophilic archae bacteria: current and future application in biotechnology. Biochem Soc Symp 1992; 58: 149 - 169.Google Scholar
  5. 5.
    Jaenicke R. Stability and folding of ultrastable proteins: eye lens crystallins and enzymes from thermophiles. FASB J 1996; 10: 84 - 92.Google Scholar
  6. 6.
    Harris GW, Pickersgill RW, Connerton I, Debeire P, Touzel JP, Breton C, Perez S. Structural basis of the properties of an industrially relevant thermophilic xylanase. Prot Struct Funct Gen 1997; 29: 77 - 86.CrossRefGoogle Scholar
  7. 7.
    Rigby JB. Amino acid composition and thermal stability of the skin collagen of the Antarctic fish. Nature 1968; 219: 166 - 167.CrossRefGoogle Scholar
  8. 8.
    Privalov PL. Stability of proteins. Adv Prot Chem 1982; 35: 1 - 104.CrossRefGoogle Scholar
  9. 9.
    Shoichet DK, Baase WA, Kuroki R, Matthews BW. A relationship between protein stability and protein function. Proc Natl Acad Sci USA 1995; 92: 542 - 549.CrossRefGoogle Scholar
  10. 10.
    Lee YE, Lowe SE, Henrissot B, Zeikus JG. Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6AR1. J Bacteriol 1993; 5890 - 5898.Google Scholar
  11. 11.
    Fontes GM, Hazlewood GP, Moraq E, Hall J, Hirst BH, Gilbert HJ. Evidence for a general role for non catalytic thermostability domains in xylanases from thermophilic bacteria. Biochem J 1995; 307: 151 - 158.Google Scholar
  12. 12.
    Nakanishi M, Tsuboi M, Ikegami A. Fluctuation of the lysozyme structure. J Mol Biol 1992; 70: 351 - 361.CrossRefGoogle Scholar
  13. 13.
    Narinx E, Baise E, Gerday C. Subtilisin from psychrophilic Antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng 1997; 10: 1271 - 1279.CrossRefGoogle Scholar
  14. 14.
    Aghajari N, Feller G, Gerday C, Haser R. Crystallization and preliminary X-ray diffraction studies of a-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Protein Sci 1996; 5: 2128 - 2129.CrossRefGoogle Scholar
  15. 15.
    Aghajari N, Feller G, Gerday C, Haser R. Crystal structures of the psychrophilic a-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibition. Protein Sci 1998; 7: 564 - 572.CrossRefGoogle Scholar
  16. 16.
    Villeret V, Chessa JP, Gerday C, Van Beeumen J. Preliminary crystal structure determination of the alkaline protease from the Antarctic psychrophile Pseudomonas aeruginosa. Protein Sci 1997; 6: 2462 - 2464.CrossRefGoogle Scholar
  17. 17.
    Alvarez M, Zeelens JP, Mainfroid V, Rentier-Delrue F, Martial J, Wyns L, Wierenga RK, Maes D. Triose-phosphate isomerase (TIM) of the psychrophilic bacterium Vi brio marinus. J Biol Chem 1998; 273: 2199 - 2206.CrossRefGoogle Scholar
  18. 18.
    Smalas RO, Heimsad ES, Hordvik A, Willasen P, Mall R. Cold adaptation of enzymes: structural comparison between salmon and bovine trypsin. Protein Struct Funct Gen 1994; 20: 149 - 166.CrossRefGoogle Scholar
  19. 19.
    Berglund GI, Willassen NP, Hordvik A, Smalas AO. Structure of native pancreatic elastase from North Atlantic salmon at 1.61 A resolution. Acta Cryst 1995; D51: 925 - 937.Google Scholar
  20. 20.
    Morita RY. Psychrophilic bacteria. Bacteriol Rev 1975; 39: 144 - 167.Google Scholar
  21. 21.
    Russell NJ. Cold adaptation of microorganisms. Phil Trans R Soc Bond 1990; 326: 595 - 611.CrossRefGoogle Scholar
  22. 22.
    Russell NJ, Hamamoto T. Psychrophiles. In: Horikoshi K, Grant WD, eds. Extremophiles: Microbial Life in Extreme Environments. New York: Wiley, 1997: 25 - 45.Google Scholar
  23. 23.
    Gounot AM. Bacterial life at low temperature: physiological aspects and biotechnological implications. J Appl Bacteriol 1991; 71: 386 - 397.CrossRefGoogle Scholar
  24. 24.
    Margesin R, Schinner F. Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 1994; 33: 1 - 14.CrossRefGoogle Scholar
  25. 25.
    Arpigny JL, Feller G, Davail S, Genicot S, Narinx E, Zekhnini Z, Gerday C. Molecular adaptations of enzymes from thermophilic and psychrophilic organisms. In: Gilles R, ed. Comparative Environmental Physiology. Berlin: Springer, 1994; 20: 269 - 295.CrossRefGoogle Scholar
  26. 26.
    Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C. Enzymes from psychrophilic organisms. FEMS Microbiol Rev 1996; 18: 189 - 202.CrossRefGoogle Scholar
  27. 27.
    Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa JP, Garsoux G, Petrescu I, Feller G. Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1997; 1342: 119 - 131.CrossRefGoogle Scholar
  28. 28.
    Feller G, Gerday C. Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 1997; 54: 830 - 841.CrossRefGoogle Scholar
  29. 29.
    Feller G, Paysan F, Theys F, Qian M, Haser R, Gerday C. Stability and structural analysis of a-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem 1994; 222: 441 - 447.CrossRefGoogle Scholar
  30. 30.
    Davail S, Feller G, Narinx E, Gerday C. Cold adaptation of proteins. Purification, characterization and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA48. J Biol Chem 1994; 269: 17448 - 17453.Google Scholar
  31. 31.
    Rentier-Delrue F, Mande SC, Moyens S, Terpstra P, Mainfroid V, Goraj K, Lion M, Hal WG, Martial J. Cloning and overexpression of the triose phosphate isomerase genes from psychrophilic and thermophilic bacteria. J Mol Biol 1993; 229: 85 - 93.CrossRefGoogle Scholar
  32. 32.
    Genicot S, Rentier-Delrue F, Edwards D, Van Beeumen J, Gerday C. Trypsin and trypsinogen from an Antarctic fish: molecular basis of cold adaptation. Biochim Biophys Acta 1996; 1298: 45 - 57.CrossRefGoogle Scholar
  33. 33.
    Aittaleb M, Hubner R, Lamotte-Brasseur J, Gerday C. Cold adaptation parameters derived from CDNA sequencing and molecular modelling of elastase from Antarctic fish Notothenia neglecta. Prot Eng 1997; 10: 475 - 477.CrossRefGoogle Scholar
  34. 34.
    Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C. Enzymes from cold-adapted microorganisms. The class C 13-lactamase from the Antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 1997; 244: 186 - 191.CrossRefGoogle Scholar
  35. 35.
    Arpigny JL, Lamotte J, Gerday C. Molecular adaptation to cold of an Antarctic bacterial lipase. J Mol Catalysis 1997; 3: 29 - 35.CrossRefGoogle Scholar
  36. 36.
    Ciardello A, Camardella L, Carratore V, Di Prisco G. Enzymes in Antarctic fish: glucose-Gphosphate dehydrogenase and glutamate dehydrogenase. Comp Biochem Physiol 1997; 118A: 1031 - 1036.CrossRefGoogle Scholar
  37. 37.
    Gericke U, Danson MJ, Russell NJ, Hough DW. Sequencing and expression of the gene encoding a cold-active citrate synthase from an Antarctic bacterium strain DS2-3R. Eur J Biochem 1997; 248: 49 - 57.CrossRefGoogle Scholar
  38. 38.
    Rina M, Gaufrier F, Markaki M, Mavromatis K, Kokkinidis M, Bouriotis V. Cloning and characterization of the gene encoding Psp PI methyltransferase from the Antarctic psychrotroph Psychrobacter sp. strain TA137. Gene 1997; 197: 353 - 360.CrossRefGoogle Scholar
  39. 39.
    Feller G, Le Bussy O, Houssier C, Gerday C. Structural and functional aspects of chloride binding to Alteromonas haloplanctis ce-amylase. J Biol Chem 1996; 271: 23836 - 23841.CrossRefGoogle Scholar
  40. 40.
    Kobori H, Sullivan CW, Shizuya H. Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5' end labelling of nucleic acids. Proc Natl Acad Sci 1984; 81: 6691 - 6695.CrossRefGoogle Scholar
  41. 41.
    Vckovski V, Schlatter D, Zuber H. Structure and function of L-lactate dehydrogenase from thermophilic, mesophilic and psychrophilic bacteria IX. Biol Chem Hoppe-Seyler 1990; 371: 103 - 110.CrossRefGoogle Scholar
  42. 42.
    Feller G, Narinx E, Arpigny JL, Zekhnini Z, Swings J, Gerday C. Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. Appl Microbiol Biotechnol 1994; 42: 477 - 479.CrossRefGoogle Scholar
  43. 43.
    Clarke A. Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Ann Rev 1983; 21: 341 - 453.Google Scholar
  44. 44.
    Eastman JT. Hypotheses perceiving to origins and speciation of fauna. In: Eastman JT, ed. Antarctic Fish Biology. San Diego: Academic Press, 1993: 125 - 142.Google Scholar
  45. 45.
    Male R, Lorens JD, Smalas AO, Torrissen KR. Molecular cloning and characterization of amino anionic and cationic variants of trypsin from Atlantic salmon. Eur J Biochem 1995; 232: 677 - 685.CrossRefGoogle Scholar
  46. 46.
    Gudmundsdottir A, Gudmundsdottir E, Oskarsson S, Bjarnason JB, Eakin AK, Croik CS. Isolation and characterization of CDNAs from Atlantic cod encoding two different forms of trypsinogen. Eur J Biochem 1993; 218: 1091 - 1097.CrossRefGoogle Scholar
  47. 47.
    Asgeirsson B, Fox JW, Bjarnason JB. Purification and characterization of trypsin from poikilotherm Gadus moshua (?). Eur J Biochem 1989; 180: 85 - 94.CrossRefGoogle Scholar
  48. 48.
    Gudmundsdottir E, Spilliaert R, Qin Yang, Croik CS, Bjarnasson JB, Gudmundsdottir A. Isolation and characterization of two CDNAs from Atlantic cod encoding two distinct psychrophilic elastases. Comp Biochem Physiol 1996; 113B: 795 - 801.CrossRefGoogle Scholar
  49. 49.
    Tani T, Ohsumi J, Mita K, Takiguchi Y. Identification of a novel class of elastase isozyme, human pancreatic elastase III by DNA and genomic gene cloning. J Biol Chem 1988; 263: 1231 - 1239.Google Scholar
  50. 50.
    Feller G, Le Bussy O, Gerday C. Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant ct-amylase. Appl Environ Microbiol 1998; 64: 1163 - 1165.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • C. Gerday
    • 1
  • M. Aittaleb
    • 1
  • J. L. Arpigny
    • 1
  • E. Baise
    • 1
  • J. P. Chessa
    • 1
  • J. M. François
    • 1
  • G. Garsoux
    • 1
  • I. Petrescu
    • 1
  • G. Feller
    • 1
  1. 1.Laboratory of Biochemistry, Institute of ChemistryUniversity of LiègeSart-Tilman, LiègeBelgium

Personalised recommendations