Dimethyl sulfide production: what is the contribution of the coccolithophores?

  • Gill Malin
  • Michael Steinke


It is hard to find a research paper or book on coccolithophores that does not include a few sentences on the role of this fascinating and enigmatic marine phytoplankton group in the production of dimethyl sulfide ((CH3)2S; DMS). Our aim here is to provide some general background information on DMS for non-specialists, but also to highlight current knowledge and what we believe to be significant gaps, for those with a specific interest in coccolithophores, other haptophytes and DMS.


Glycine Betaine Dimethyl Sulfide Emiliania Huxleyi DMSP Concentration Coastal Zone Color Scanner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agusti S, Duarte CM (2000) Strong seasonality in phytoplankton cell lysis in the NW Mediterranean littoral. Limnol Oceanogr 45: 940–947CrossRefGoogle Scholar
  2. Anderson TL, Spall SA, Yool A, Cipollini P, Challenor PG, Fasham MJR (2001) Global fields of sea surface dimethylsulfide predicted from chlorophyll, nutrients and light. J Mar Sys 30: 1–20CrossRefGoogle Scholar
  3. Archer SD, Gilbert FJ, Nightingale PD, Zubkov MV, Taylor AH, Smith GC, Burkill PH (2002a) Transformation of dimethylsulphoniopropionate to dimethyl sulphide during summer in the North Sea with an examination of key processes via a modelling approach. Deep-Sea Res II 49: 3067–3101Google Scholar
  4. Archer SD, Smith GC, Nightingale PD, Widdicombe CE, Tarran GA, Rees AP, Burkill PH (2002b) Dynamics of particulate dimethylsulphoniopropionate during a Lagrangian experiment in the northern North Sea. Deep-Sea Res II 49: 2979–2999Google Scholar
  5. Archer SD, Steifox-Widdicombe C, Burkill PH, Malin G (2001) A dilution approach to quantify the production of dissolved dimethylsulphoniopropionate and dimethyl sulphide due to microzooplankton herbivory. Aquat Microb Ecol 23: 131–154CrossRefGoogle Scholar
  6. Archer SD, Stelfox-Widdicombe CE, Malin G, Burkill PH (2003) Is dimethyl sulphide production related to microzooplankton herbivory in the southern North Sea? J Plank Res 25: 235–242CrossRefGoogle Scholar
  7. Aumont O, Belviso S, Monfray P (2002) Dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) sea surface distributions simulated from a global three-dimensional ocean carbon cycle model. J Geophys Res 107 (C4): 10.1029/1999JC000111CrossRefGoogle Scholar
  8. Ballesteros B, Jensen NR, Hjorth J (2002) FT-IR Study of the Kinetics and Products of the Reactions of Dimethylsulphide, Dimethylsulphoxide and Dimethylsulphone with Br and BrO. J Atmos Chem 43: 135–150CrossRefGoogle Scholar
  9. Bates NR, Michaels AF, Knap AH (1996) Alkalinity changes in the Sargasso Sea: geo-chemical evidence of calcification? Mar Chem 51: 347–358CrossRefGoogle Scholar
  10. Bates TS, Kiene RP, Wolfe GV, Matrai PA, Chavez FP, Buck KR, Blomquist BW, Cuhel RL (1994) The Cycling of Sulfur in Surface Seawater of the Northeast Pacific. J Geophys Res-Oceans 99 (C4): 7835–7843CrossRefGoogle Scholar
  11. Bates TS, Cline JD, Gammon RH, Kelly-Hanson SR (1987) Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere. J Geophys Res 92: 2930–2938CrossRefGoogle Scholar
  12. Bates TS, Lamb BK, Guenther A, Dignon J, Stoiber RE (1992) Sulfur emissions to the atmosphere from natural sources. J Atmos Chem 14: 315–337CrossRefGoogle Scholar
  13. Baumann MEM, Brandini FP, Staubes R (1994) The influence of light and temperature on carbon-specific DMS release by cultures of Phaeocystis antarctica and three antarctic diatoms. Mar Chem 45: 129–136CrossRefGoogle Scholar
  14. Belviso S, Buat-Menard P, Putaud JP, Nguyen BC, Claustre H, Neveux J (1993) Size Distribution of Dimethylsulfoniopropionate (DMSP) in Areas of the Tropical Northeastern Atlantic-Ocean and the Mediterranean-Sea. Mar Chem 44: 55–71CrossRefGoogle Scholar
  15. Belviso S, Claustre H, Marty JC (2001) Evaluation of the utility of chemotaxonomic pigments as a surrogate for particulate DMSP. Limnol Oceanogr 46: 989–995CrossRefGoogle Scholar
  16. Berresheim H (1987) Biogenic sulfur emissions from the sub-arctic and antarctic oceans. J Geophys Res 92: 13245–13262CrossRefGoogle Scholar
  17. Billard C (1994) Life cycles. In: Green JC, Leadbeater BSC (eds) The Haptophyte Algae. Systematics Association Special Volume 51. Clarendon Press, Oxford, pp 167–186Google Scholar
  18. Bollmann J, Cortés MY, Haidar AT, Brabec B, Close A, Hofmann R, Palma S, Tupas L, Thierstein HR (2002) Techniques for quantitative analyses of calcareous marine phytoplankton. Mar Micropaleontol 44: 163–185CrossRefGoogle Scholar
  19. Bopp L, Aumont O, Belviso S, Monfray P (2003) Potential impact of climate change on marine dimethylsulfide emissions. Tellus 55B: 11–22CrossRefGoogle Scholar
  20. Bouillon R-C, Lee PA, de Mora SJ, Levasseur M, Lovejoy C (2002) Vernal distribution of dimethylsulphide, dimethylsulphoniopropionate, and dimethylsulphoxide in the North Water in 1998. Deep-Sea Res II 49: 5171–5189Google Scholar
  21. Boyd PW, Law CS (2001) The Southern Ocean Iron RElease Experiment (SOIREE) — introduction and summary. Deep-Sea Res II 48: 2425–2438Google Scholar
  22. Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407: 695–702CrossRefGoogle Scholar
  23. Brimblecombe P, Shooter D (1986) Photo-oxidation of dimethylsulphide in aqueous solution. Mar Chem 19: 343–353CrossRefGoogle Scholar
  24. Brown CW, Yoder JA (1994a) Coccolithophorid blooms in the global ocean. J Geophys Res 99 (C4): 7467–7482CrossRefGoogle Scholar
  25. Brown CW, Yoder JA (1994b) Distribution pattern of coccolithophorid blooms in the western North Atlantic. Cont Shelf Res 14: 175–197CrossRefGoogle Scholar
  26. Brugger A, Slezak D, Obernosterer I, Herndl GJ (1998) Photolysis of dimethylsulfide in the northern Adriatic Sea: Dependence on substrate concentration, irradiance and DOC concentration. Mar Chem 59: 321–331CrossRefGoogle Scholar
  27. Brussaard CPD, Riegman R, Noordeloos AAM, Cadee GC, Witte H, Kop AJ, Nieuwland G, Van Duyl FC, Bak RPM (1995) Effects of grazing, sedimentation and phytoplank-ton cell lysis on the structure of a coastal pelagic food web. Mar Ecol Prog Ser 123: 259–271CrossRefGoogle Scholar
  28. Burkill PH, Archer SD, Robinson C, Nightingale PD, Groom SB, Tarran GA, Zubkov MV (2002) Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): an overview. Deep-Sea Res II 49: 2863–2885Google Scholar
  29. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326: 655–661CrossRefGoogle Scholar
  30. Chin M, Jacob DJ (1996) Anthropogenic and natural contributions to tropospheric sulfate: a global model analysis. J Geophys Res 101 (D13): 18691–18699CrossRefGoogle Scholar
  31. Corn M, Belviso S, Partensky F, Simon N, Christaki U (1996) Origin and importance of pi-coplanktonic DMSP. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, pp 191–201CrossRefGoogle Scholar
  32. Couper A (1989) The Times Atlas and Encyclopedia of the Sea. Times Books, LondonGoogle Scholar
  33. Crocker KM, Ondrusek ME, Petty RL, Smith RC (1995) Dimethylsulfide, algal pigments and light in an Antarctic Phaeocystis sp. bloom. Mar Biol 124: 335–340CrossRefGoogle Scholar
  34. Curran MAJ, Jones GB (2000) Dimethyl sulfide in the Southern Ocean: Seasonality and flux. J Geophys Res 105 (D16): 20451–20459CrossRefGoogle Scholar
  35. Dacey JWH, Howse FA, Michaels AF, Wakeham SG (1998) Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea. Deep-Sea Res 45: 2085–2104CrossRefGoogle Scholar
  36. Dacey JWH, Wakeham SG (1986) Oceanic dimethylsulfide: production during Zooplankton grazing on phytoplankton. Science 233: 1314–1316CrossRefGoogle Scholar
  37. Delmas, RJ (1995) Ice core studies of global biogeochemical cycles. Springer-Verlag, BerlinGoogle Scholar
  38. DiTullio GR (1996) Dimethylsulfide concentrations in the southern Ross Sea during austral summer 1995–1996. Antarctic J of the US 31: 127–128Google Scholar
  39. Donelan MA, Drennan WM, Saltzman ES, Wanninkhof R (2002) Gas Transfer at Water Surfaces. Geophysical Monograph Series, Volume 127. American Geophysical UnionCrossRefGoogle Scholar
  40. Edwards M, Reid P, Planque B (2001) Long-term and regional variability of phytoplankton biomass in the Northeast Atlantic (1960–1995). ICES J Mar Sci 58: 39–49CrossRefGoogle Scholar
  41. Evans C, Archer SD, Jacquet S, Wilson WH (2003) Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population. Aquat Microb Ecol 30: 207–219CrossRefGoogle Scholar
  42. Eynaud F, Giraudeau J, Pichon JJ, Pudsey CJ (1999) Sea-surface distribution of coccolitho-phores, diatoms, silicoflagellates and dinoflagellates in the South Atlantic Ocean during the late austral summer 1995. Deep-Sea Res 146: 451–482Google Scholar
  43. Falkowski PG, Kim Y, Kolber Z, Wilson C, Wirick C, Cess R (1992) Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic. Science 256: 1311–1313CrossRefGoogle Scholar
  44. Gabric AJ, Whetton PH, Boers R, Ayers GP (1998) The impact of simulated climate change on the air-sea flux of dimethylsulphide in the subantarctic Southern Ocean. Tellus 50B: 388–399CrossRefGoogle Scholar
  45. Gabric AJ, Whetton PH, Cropp R (2001) Dimethylsulphide production in the subantarctic southern ocean under enhanced greenhouse conditions. Tellus 53B: 273–287CrossRefGoogle Scholar
  46. Gage DA, Rhodes D, Nolte KD, Hicks WA, Leustek T, Cooper AJL, Hanson AD (1997) A new route for synthesis of dimethylsulphoniopropionate in marine algae. Nature 387: 891–894CrossRefGoogle Scholar
  47. Gibson JAE, Garrick RC, Burton HR, McTaggart AR (1990) Dimethylsulphide and the alga Phaeocystis pouchetii in Antarctic coastal waters. Mar Biol 104: 339–346CrossRefGoogle Scholar
  48. Gibson JAE, Swadling KM, Burton HR (1996) Acrylate and dimethylsulfoniopropionate (DMSP) concentrations during an Antarctic phytoplankton bloom. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, pp. 213–222CrossRefGoogle Scholar
  49. Gondwe M, Klassen W, Gieskes, W, de Baar H (2001) Negligible direct radiative forcing of basin-scale climate by coccolithophore blooms. Geophys Res Lett 28: 3911–3914CrossRefGoogle Scholar
  50. Gonzalez JM, Kiene RP, Moran MA (1999) Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl Environ Microbiol 65: 3810–3819Google Scholar
  51. Gregg WW, Conkright ME (2002) Decadal changes in global ocean chlorophyll. Geophys Res Lett 29: 10.1029/2002GL014689CrossRefGoogle Scholar
  52. Haidar AT, Thierstein HR (2001) Coccolithophore dynamics off Bermuda (N. Atlantic). Deep-Sea Res II 48: 1925–1956Google Scholar
  53. Hamm CE, Simson DA, Merkel R, Smetacek V (1999) Colonies of Phaeocystis globosa are protected by a thin but tough skin. Mar Ecol-Prog Ser 187: 101–111CrossRefGoogle Scholar
  54. Hansson ME, Saltzman ES (1993) The 1st greenland ice core record of methanesulfonate and sulfate over a full glacial cycle. Geophys Res Lett 20: 1163–1166CrossRefGoogle Scholar
  55. Hatton AD (2002) Influence of photochemistry on the marine biogeochemical cycle of dimethylsulphide in the northern North Sea. Deep-Sea Res II 49: 3039–3052Google Scholar
  56. Henriksson AS, Sarnthein M, Eglinton G, Poynter J (2000) Dimethylsulfide production variations over the past 200 k.y. in the equatorial Atlantic: A first estimate. Geology 28: 499–502CrossRefGoogle Scholar
  57. Hill RW, White RB, Cottrell MT, Dacey JWH (1998) Virus-mediated total release of dimethylsulfoniopropionate from marine phytoplankton: a potential climate process. Aquat Microb Ecol 14: 1–6CrossRefGoogle Scholar
  58. Holligan PM, Fernandez E, Aiken J, Balch WM, Boyd, P, Burkill PH, Finch M, Groom SB, Malin G, Muller K, Purdie DA, Robinson C, Trees CC, Turner SM, Van der Wal P (1993) A Biogeochemical Study of the Coccolithophore, Emiliania huxleyi, in the North-Atlantic. Global Biogeochem Cy 7: 879–900CrossRefGoogle Scholar
  59. Holligan PM, Turner SM, Liss PS (1987) Measurements of Dimethyl Sulfide in Frontal Regions. Cont Shelf Res 7: 213–224CrossRefGoogle Scholar
  60. Inglesias-Rodríguez MD, Brown CW, Doney SC, Kleypas J, Kolber D, Kolber Z. Hayes PK, Falkowski PG (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Global Biogeochem Cy: 10.1029/2001GB001454Google Scholar
  61. Jacobsen A, Bratbak G, Heldal M (1996) Isolation and characterisation of a virus infecting Phaeocystis pouchetii (Prymnesiophyceae). J Phycol 32: 923–927CrossRefGoogle Scholar
  62. John EH, Batten SD, Stevens D, Walne AW, Jonas T, Hays GC (2002) Continuous plankton records stand the test of time: evaluation of flow rates, clogging and the continuity of the CPR time-series. J Plankton Res 24: 941–946CrossRefGoogle Scholar
  63. Karsten U, Wienke C, Kirst GO (1992) Dimethylsulfoniopropionate (DMSP) accumulation in green macroalgae from polar to temperate regions: interactive effects of light versus salinity and light versus temperature. Polar Biol 12: 603–607CrossRefGoogle Scholar
  64. Karsten U, Kuck K, Vogt C, Kirst GO (1996) Dimethylsulfoniopropionate production in phototrophic organisms and its physiological function as a cryoprotectant. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, pp 143–153CrossRefGoogle Scholar
  65. Keller MD (1989) Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biolog Oceanogr 6: 375–382Google Scholar
  66. Keller MD, Bellows WK, Guillard RRL (1989a) Dimethyl sulfide production in marine phytoplankton. In: Saltzman ES, Cooper WJ (eds) Biogenic Sulfur in the Environment. American Chemical Society, Washington D.C. pp 183–200Google Scholar
  67. Keller MD, Bellows WK, Guillard RRL (1989b) Dimethylsulfide production and marine phytoplankton: an additional impact of unusual blooms. In: Cosper EM, Carpenter EJ (eds) Novel Phytoplankton Blooms — Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Springer-Verlag, Berlin, pp 101–115CrossRefGoogle Scholar
  68. Keller MD, Kiene RP, Matrai PA, Bellows WK. (1999a) Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. I. Batch cultures. Mar Biol 135: 237–248CrossRefGoogle Scholar
  69. Keller MD, Kiene RP, Matrai PA, Bellows WK (1999b) Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. II. N-limited chemostat cultures. Mar Biol 135: 249–257CrossRefGoogle Scholar
  70. Keller M, Korjeff-Bellows W (1996) Physiological aspects of the production of dimethylsulfoniopropionate (DMSP) by marine phytoplankton. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, pp 131–142CrossRefGoogle Scholar
  71. Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the oceans: A comparison of updated data seas and flux models. J Geophys Res 105 (D22): 26793–26808CrossRefGoogle Scholar
  72. Kettle AJ, Andreae MO, Amouroux D, Andreae TW, Bates TS, Berresheim H et al. (1999) A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Global Biogeochem Cy 3: 399–444CrossRefGoogle Scholar
  73. Kieber DJ, Jiao JF, Kiene RP, Bates TS (1996) Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the equatorial Pacific Ocean. J Geophysl Res 101 (C2): 3715–3722CrossRefGoogle Scholar
  74. Kiene, RP, Bates TS (1990) Biological removal of dimethyl sulfide from seawater. Nature 345: 702–705CrossRefGoogle Scholar
  75. Kiene RP, Linn LJ (2000) The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: Tracer studies using S-35-DMSP. Geochim Cosmochim Acta 64: 2797–2810CrossRefGoogle Scholar
  76. Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43: 209–224CrossRefGoogle Scholar
  77. Kiene RP, Linn LJ, Gonzalez J, Moran MA, Bruton JA (1999) Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol 65: 4549–4558Google Scholar
  78. King GM (1988) Distribution and metabolism of quaternary amines in marine sediments. In: Blackburn TH, Sorensen J (eds) Nitrogen Cycling in Coastal Marine Sediments. John Wiley and Sons, Chichester, pp 143–173Google Scholar
  79. Kirst GO (1996) Osmotic adjustment in phytoplankton and macroalgae. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, pp 121–129CrossRefGoogle Scholar
  80. Kirst G, Thiel C, Wolff H, Nothnagel J, Wanzek M, Ulmke R (1991) Dimethylsulfonio-propionate (DMSP) in ice-algae and its possible biological role. Mar Chem 35: 381–388CrossRefGoogle Scholar
  81. Landry MR, Hassett RP (1982) Estimating the grazing impact of marine microzooplankton. Mar Biol 67: 283–288CrossRefGoogle Scholar
  82. Landry MR, Kirshtein JC, Constantinu J (1995) A refined dilution technique for measuring community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Mar Ecol Prog Ser 120: 53–63CrossRefGoogle Scholar
  83. Leck C, Persson C (1996) The central Arctic Ocean as a source of dimethyl sulfide — seasonal variability in relation to biological activity. Tellus 48B: 156–177CrossRefGoogle Scholar
  84. Lee PA, de Mora SJ (1999a) Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae speculation on its origin and possible biological role. J Phycol 35: 8–18CrossRefGoogle Scholar
  85. Lee PA, de Mora SJ (1999b) A review of dimethylsulfoxide in aquatic environments. Atmos-Ocean 37: 439–456CrossRefGoogle Scholar
  86. Lee PA, de Mora SJ, Gosselin M, Levasseur M, Bouillon R-C, Nozais C, Michel C (2001) Particulate dimethylsulfoxide in Arctic sea-ice algal communities: the cryoprotectant hypothesis revisited. J Phycol 37: 488–499CrossRefGoogle Scholar
  87. Levasseur M, Gosselin M, Michaud S (1994) A new source of dimethylsulfide (DMS) for the Arctic atmosphere: ice diatoms. Mar Biol 121: 381–387CrossRefGoogle Scholar
  88. Liss PS, Malin G, Turner SM, Holligan PM (1994) Dimethyl Sulfide and Phaeocystis — a Review. J Mar Syst 5: 41–53CrossRefGoogle Scholar
  89. Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. Reidel, Dordrecht, pp 113–127CrossRefGoogle Scholar
  90. Lovelock JE, Maggs RJ, Rasmussen RA (1972) Atmospheric sulfur and the natural sulfur cycle. Nature 237: 452–453CrossRefGoogle Scholar
  91. Malin G (1996) The Role of DMSP in the Global Sulfur Cycle and Climate Regulation. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, pp 177–189CrossRefGoogle Scholar
  92. Malin G, Liss PS, Turner SM (1994) Dimethyl sulfide: production and atmospheric consequences. In: Green JC, Leadbeater BSC (eds) The Haptophyte Algae. Systematics Association Special Volume 51. Clarendon Press, Oxford, pp 303–320Google Scholar
  93. Malin G, Turner SM, Liss PS (1992) Sulfur: the plankton / climate connection. J Phycol 28: 590–597CrossRefGoogle Scholar
  94. Malin G, Turner SM, Liss PS, Holligan PM, Harbour DS (1993) Dimethylsulphide and di-methylsulphoniopropionate in the north east Atlantic during the summer coccolitho-phore bloom. Deep-Sea Res 140: 1487–1508Google Scholar
  95. Malin G, Wilson WH, Bratbak G, Liss PS, Mann NH (1998) Elevated production of dimethyl sulfide resulting from viral infection of Phaeocystis pouchetii. Limnol Oceanogr 43: 1389–1393CrossRefGoogle Scholar
  96. Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371: 123–129CrossRefGoogle Scholar
  97. Matrai PA, Keller MD (1993) Dimethyl sulfide in a large-scale coccolithophore bloom in the Gulf of Maine. Cont Shelf Res 13: 831–843CrossRefGoogle Scholar
  98. Matrai PA, Keller MD (1994) Total organic sulfur and dimethylsulfoniopropionate (DMSP) in marine phytoplankton: intracellular variations. Mar Biol 119: 61–68CrossRefGoogle Scholar
  99. Matrai PA, Vernet M (1997) Dynamics of the vernal bloom in the marginal ice zone of the Barents Sea: dimethyl sulfide and dimethylsulfoniopropionate budgets. J Geophys Res 102 (CIO): 22965–22979CrossRefGoogle Scholar
  100. Matrai PA, Vernet M, Hood R, Jennings A, Brody E, Saemundsdottir S (1995) Light-dependence of carbon and sulfur production by polar clones of the genus Phaeocystis. Mar Biol 124: 157–167CrossRefGoogle Scholar
  101. Moon-Van der Staay SY, de Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409: 607–610CrossRefGoogle Scholar
  102. Moon-Van der Staay SY, Van der Staay GWM, Guillou L, Vaulot D, Claustre H, Medlin LK (2000) Abundance and diversity of prymnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol Oceanogr 45: 98–109CrossRefGoogle Scholar
  103. Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem Cy 14: 373–387CrossRefGoogle Scholar
  104. Niki T, Kunugi M, Otsuki A (2000) DMSP-lyase activity in five marine phytoplankton species: its potential importance in DMS production. Mar Biol 136: 759–764CrossRefGoogle Scholar
  105. Noordkamp DJB, Gieskes WWC, Gottschal JC, Forney LJ, Van Rijssel M (2000) Acrylate in Phaeocystis colonies does not affect the surrounding bacteria. J Sea Res 43: 287–296CrossRefGoogle Scholar
  106. Noordkamp DJB, Schotten M, Gieskes WWC, Forney LJ, Gottschal JC, Van Rijssel M (1998) High acrylate concentrations in the mucus of Phaeocystis globosa colonies. Aquat Microb Ecol 16: 45–52CrossRefGoogle Scholar
  107. Pasteur EC, Mulvaney R (2000) Migration of methane sulfonate in Antarctic firn and ice. J Geophysl Res 105 (D9): 11525–11534CrossRefGoogle Scholar
  108. Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature, 374: 255–257CrossRefGoogle Scholar
  109. Plane JMC (1989) Gas-phase atmospheric oxidation of biogenic sulfur compounds. In: Saltzman ES, Cooper WJ (eds) Biogenic Sulfur in the Environment. ACS Symposium Series. American Chemical Society, Washington DC, pp 404–423CrossRefGoogle Scholar
  110. Ravishankara AR, Rudich Y, Talukdar R, Barone SB (1997) Oxidation of atmospheric reduced sulphur compounds: perspective from laboratory studies. Phil Trans Roy Soc B 352: 171–182CrossRefGoogle Scholar
  111. Read JF, Pollard RT (2001) A long-lived eddy in the Iceland Basin 1998. J Geophys Res 106 (C6): 11411–11421CrossRefGoogle Scholar
  112. Reid PC, Edwards M, Hunt HG, Warner AJ (1998) Phytoplankton change in the North Atlantic. Nature 391: 546CrossRefGoogle Scholar
  113. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407: 364–367CrossRefGoogle Scholar
  114. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25: 163–171CrossRefGoogle Scholar
  115. Savidge G, Williams PJL (2001) The PRIME 1996 cruise: an overview. Deep-Sea Res II 48: 687–704Google Scholar
  116. Savoie DL, Prospero JM (1989) Comparison of oceanic and continental sources of non-sea-salt sulfate over the Pacific Ocean. Nature 339: 685–687CrossRefGoogle Scholar
  117. Scarratt M, Cantin G, Levasseur M, Michaud S (2000) Particle size-fractionated kinetics of DMS production: where does DMSP cleavage occur at the microscale? J Sea Res 43: 245–252CrossRefGoogle Scholar
  118. Schroeder D, Oke J, Malin G, Wilson WH (2002) Coccolithovirus (Phycodnaviridae): characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi. Arch Virol 147: 1685–1698CrossRefGoogle Scholar
  119. Shaw GE (1983) Bio-controlled thermostasis involving the sulfur cycle. Climate Change 5: 297–303CrossRefGoogle Scholar
  120. Sheets EB, Rhodes D (1996) Determination of DMSP and other onium compounds in Tetraselmis subcordiformis by plasma desorption mass spectrometry. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, pp 55–63CrossRefGoogle Scholar
  121. Shenoy DM, Joseph S, Kumar MD, George MD (2002) Control and interannual variability of dimethyl sulfide in the Indian Ocean. J Geophys Res 107: 10.1029/2001JD000371CrossRefGoogle Scholar
  122. Shooter D, Brimblecombe P (1989) Dimethylsulfide oxidation in the ocean. Deep-Sea Res 36: 577–585CrossRefGoogle Scholar
  123. Simó R (1998) Trace chromatographic analysis of dimethyl sulfoxide and related methylated sulfur compounds in natural waters. J Chromatogr A 807: 151–164CrossRefGoogle Scholar
  124. Simó R (2001) Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol 15: 287–294CrossRefGoogle Scholar
  125. Simó R, Dachs J (2002) Global ocean emission of dimethylsulfide predicted from biogeo-physical data. Global Biogeochem Cy 16: 10.1029/2001GB001829CrossRefGoogle Scholar
  126. Simó R, Hatton AD, Malin G, Liss PS (1998) Particulate dimethyl sulfoxide in seawater: production by microplankton. Mar Ecol Prog Ser 167: 291–296CrossRefGoogle Scholar
  127. Simó R, Pedros-Alio C (1999) Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 402: 396–399CrossRefGoogle Scholar
  128. Simó R, Pedros-Alio C (1999) Short-term variability in the open ocean cycle of dimethylsulfide. Global Biogeochem Cy 13: 1173–1181CrossRefGoogle Scholar
  129. Simó R, Pedrós-Alió C, Malin G, Grimait JO (2000) Biological turnover of DMS, DMSP and DMSO in contrasting open- sea waters. Mar Ecol Prog Ser 203: 1–11CrossRefGoogle Scholar
  130. Slezak DM, Puskaric S, Herndl GJ (1994) Potential role of acrylic acid in bacterioplankton communities in the sea. Mar Ecol Prog Ser 105: 191–197CrossRefGoogle Scholar
  131. Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43: 183–197CrossRefGoogle Scholar
  132. Stefels J, Dijkhuisen L, Gieskes WWC (1995) DMSP-lyase activity in a spring phyto-plankton bloom off the Dutch coast, related to Phaeocystis sp. abundance. Mar Ecol Prog Ser 123: 235–243CrossRefGoogle Scholar
  133. Stefels J, Dijkhuizen L (1996) Characteristics of DMSP-lyase in Phaeocystis sp. (Prymne-siophyceae). Mar Ecol Prog Ser 131: 307–313CrossRefGoogle Scholar
  134. Stefels J, Gieskes WWC, Dijkhuizen L (1996) Intriguing functionality of the production and conversion of DMSP in Phaeocystis sp. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, pp 305–315CrossRefGoogle Scholar
  135. Stefels J, Van Boekel WHM (1993) Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar Ecol Prog Ser 97: 11–18CrossRefGoogle Scholar
  136. Stefels J, Van Leeuwe MA (1998) Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). I. Intracellular DMSP concentrations. J Phycol 34: 486–495CrossRefGoogle Scholar
  137. Steinke M, Daniel C, Kirst GO (1996) DMSP lyase in marine macro- and microalgae. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, pp 317–324CrossRefGoogle Scholar
  138. Steinke M, Malin G, Archer SD, Burkill PH, Liss PS (2002a) DMS production in a cocco-lithophorid bloom: evidence for the importance of dinoflagellate DMSP lyases. Aquat Microb Ecol 26: 259–270CrossRefGoogle Scholar
  139. Steinke M, Malin G, Gibb SW, Burkill PH (2002b) Vertical and temporal variability of DMSP lyase activity in a coccolithophorid bloom in the northern North Sea. Deep-Sea Res II 49: 3001–3016Google Scholar
  140. Steinke M, Malin G, Liss PS (2002c) Trophic interactions in the sea: an ecological role for climate relevant volatiles. J Phycol 38: 630–638CrossRefGoogle Scholar
  141. Steinke M, Malin G, Turner SM, Liss PS (2000) Determinations of dimethylsulphonio-propionate (DMSP) lyase activity using headspace analysis of dimethylsulphide (DMS). J Sea Res 43: 233–244CrossRefGoogle Scholar
  142. Steinke M, Wolfe GV, Kirst GO (1998) Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar Ecol Prog Ser 175: 215–225CrossRefGoogle Scholar
  143. Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418: 317–320CrossRefGoogle Scholar
  144. Taylor BF (1993) Bacterial transformations of organic sulfur compounds in marine environments. In: Oremland RS (ed) Biogeochemistry of Global Change. Chapman & Hall, New York, pp 745–781CrossRefGoogle Scholar
  145. Taylor BF, Visscher PT (1996). Metabolic pathways involved in DMSP degradation. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, pp 265–276CrossRefGoogle Scholar
  146. Thierstein HR, Geitzenauer KR, Molifino B, Shackleton NJ (1977) Global synchroneity of late Quaternary coccolith datum levels: validation by oxygen isotopes. Geology 5: 400–404CrossRefGoogle Scholar
  147. Turner SM, Malin G, Liss PS, Harbour DS, Holligan PM (1988) The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol Oceanogr 33: 364–375CrossRefGoogle Scholar
  148. Turner SM, Nightingale PD, Broadgate W, Liss PS (1995) The distribution of dimethyl sulfide in Antarctic waters and sea ice. Deep-Sea Res II 42: 1059–1080Google Scholar
  149. Turner SM, Malin G, Nightingale PD, Liss PS (1996a) Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere. Mar Chem 54: 245–262CrossRefGoogle Scholar
  150. Turner SM, Nightingale PD, Spokes LJ, Liddicoat MI, Liss PS (1996b) Increased dimethyl sulfide concentrations in seawater from in situ iron enrichment. Nature 383: 513–517CrossRefGoogle Scholar
  151. Twomey S (1991) Aerosols, clouds and radiation. Atmos Env 25: 2435–2442CrossRefGoogle Scholar
  152. Tyrrell T, Holligan PM, Mobley CD (1999) Optical impacts of oceanic coccolithophore blooms. J Geophys Res 104 (C2): 3223–3241CrossRefGoogle Scholar
  153. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38Google Scholar
  154. Van Rijssel M, Buma AGJ (2002) UV radiation induced stress does not affect DMSP synthesis in the marine prymnesiophyte Emiliania huxleyi. Aquat Microbl Ecol 28: 167–174CrossRefGoogle Scholar
  155. Van den Berg AJ, Turner SM, Van Duyl FC, Ruardij P (1996) Model structure and analysis of dimethylsulfide (DMS) production in the southern North sea, considering phytoplankton dimethylsulfoniopropionate — (DMSP) lyase and eutrophication effects. Mar Ecol Prog Ser 145: 233–244CrossRefGoogle Scholar
  156. Vetter Y-A, Sharp JH (1993) The influence of light intensity on dimethylsulfide production by a marine diatom. Limnol Oceanogr 38: 419–425CrossRefGoogle Scholar
  157. Wanninkhof R (1992) Relationship between gas exchange and wind speed over the ocean. J Geophys Res 97: 7373–7382CrossRefGoogle Scholar
  158. Wanninkhof R, McGillis WR (1999) A cubic relationship between air-sea CO2 exchange and wind speed. Geophys Res Lett 26: 1889–1892CrossRefGoogle Scholar
  159. Watson AJ, Liss PS (1998). Marine biological controls on climate via the carbon and sulphur geochemical cycles. Phil Trans Roy Soc Lond B 353: 41–51CrossRefGoogle Scholar
  160. Watson AJ, Liss PS, Duce RA (1991a) Design of a small-scale in situ iron fertilisation experiment. Limnol Oceanogr 36: 1960–1965CrossRefGoogle Scholar
  161. Watson AJ, Upstill-Goddard RC, Liss PS (1991b) Air Sea Gas-Exchange in Rough and Stormy Seas Measured By a Dual-Tracer Technique. Nature 349: 145–147CrossRefGoogle Scholar
  162. Wilson WH, Tarran G, Zubkov MV (2002a) Virus dynamics in a coccolithophore-dominated bloom in the North Sea. Deep-Sea Res II 49: 2951–2963Google Scholar
  163. Wilson WH, Tarran GA, Schroeder D, Cox M, Oke J, Malin G (2002b) Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. J Mar Biol Assoc U.K. 82: 369–377CrossRefGoogle Scholar
  164. Winter A, Elbrachter M, Krause G (1999) Subtropical coccolithophores in the Weddell Sea. Deep-Sea Res 146: 439–449Google Scholar
  165. Winter A, Siesser WG (eds) (1994) Coccolithophores. Cambridge University Press, CambridgeGoogle Scholar
  166. Wolfe GV, Kiene RP (1993) Effects of methylated, organic, and inorganic substrates on microbial consumption of dimethyl sulfide in estuarine waters. Appl Environ Microbiol 59: 2723–2726Google Scholar
  167. Wolfe GV, Levasseur M, Cantin G, Michaud S (2000) DMSP and DMS dynamics and microzooplankton grazing in the Labrador Sea: application of the dilution technique. Deep-Sea Res 147: 2243–2264Google Scholar
  168. Wolfe GV, Steinke M, Kirst GO (1997) Grazing-activated chemical defence in a unicellular marine alga. Nature 387: 894–897CrossRefGoogle Scholar
  169. Wolfe GV, Steinke MS (1996) Contrasting production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi during growth, and when grazed by Oxyrrhis marina. Limnol Oceanogr 41: 1151–1160CrossRefGoogle Scholar
  170. Wright SW, Van den Enden RL (2001) Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, January-March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res II 47: 2363–2400Google Scholar
  171. Yang G-P, Liu X-T, Li L, Zhang Z-B (1999) Biogeochemistry of dimethylsulfide in the south China Sea. J Mar Res 57: 189–211CrossRefGoogle Scholar
  172. Yang H, Davidson AT, Burton H (1994) Measurement of acrylic acid and dimethyl sulfide in Antarctic coastal water during a summer bloom of Phaeocystis pouchetii. Proc. MIPR Symp Polar Biol 7: 43–52Google Scholar
  173. Yang H, McTaggart AR, Davidson AT, Burton H (1992) Natural productivity of acrylic acid and dimethyl sulfide during a summer bloom of Phaeocystis pouchetii in Antarctic coastal water. Antarc Res 3: 26–43Google Scholar
  174. Yin F, Grosjean D, Scinfeld JH (1990) Photooxidation of dimethyl sulfide and dimethyldi-sulfide. I: Mechanism development. J Atmos Chem 11: 309–364CrossRefGoogle Scholar
  175. Young JR, Bown PR, Burnett JA (1994) Palaeontological perspectives. In: Green JC, Leadbeater BSC (eds) The Haptophyte Algae. Systematics Association Special Volume 51. Clarendon Press, Oxford, pp. 379–392Google Scholar
  176. Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH 2001. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphonio-propionate in an algal bloom in the North Sea. Environ Microbiol 3: 304–311CrossRefGoogle Scholar
  177. Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH (2002) Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Res II 49: 3017–3038Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Gill Malin
    • 1
  • Michael Steinke
    • 1
  1. 1.School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations