Skip to main content

Coccolithophorid-based geochemical paleoproxies

  • Chapter

Summary

Coccolithophores are the only marine organisms that provide indicators of past climatic and oceanographic conditions from both the organic (molecular fossils or biomarkers) and inorganic (calcium carbonate) remains in sediments. The under-saturation ratio of alkenone biomarkers (U37 K) provides information about past sea surface temperatures and is gaining widespread use as a paleotemperature proxy, particularly in the Quaternary sediment record. The carbon isotopic fractionation in alkenone biomarkers (εalkenone) should allow reconstruction of past dissolved and atmospheric CO2 concentrations if independent proxies are able to consistently constrain the nutrient or growth rate influence on isotopic fractionation. The Sr/Ca ratio of coccolith carbonate is the most developed proxy from the elemental chemistry of coccoliths. Recent culture and field studies suggest that the Sr/Ca ratio has potential as an indicator of nutrient-stimulated coccolithophorid growth rates. In contrast, while the Mg/Ca ratio of coccoliths is probably controlled by temperature, formidable challenges in removing noncarbonate sources of Mg from coccolith fractions will probably preclude use of coccolith Mg/Ca for paleother-mometry. Similar challenges in cleaning will probably also preclude use of coccolith Cd, Ba, V, or U. Stable isotopic measurements in coccolith-dominated bulk carbonate have been widely used to infer temperature changes and changes in the carbon cycle in the Mesozoic and Early Cenozoic, despite an array of nonequilib-rium or “vital effects” in different species. In addition to paleoceanographic applications, continued study of the stable isotopic fractionation of coccoliths in culture may also elucidate mechanisms of carbon acquisition in different coccolithophorid species. As is the case for all paleoceanographic proxies, continued calibration studies are required to further improve our understanding of coccolithophorid-based proxy systems and increase confidence in their application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins JF, Boyle EA, Curry WB, Luringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects.” Geochim Cosmochim Ac 67:1129–1143

    Article  Google Scholar 

  • Anderson TF, Cole SA (1975) The stable isotope geochemistry of marine coccoliths: a preliminary comparison with planktonic foraminifera. J Foram Res 5: 188–192

    Article  Google Scholar 

  • Anderson TF, Steinmetz JC (1981) Isotopic and biostratigraphical records of calcareous nannofossil in a Pleistocene core. Nature 294: 741–744

    Article  Google Scholar 

  • Anderson TF, Steinmetz JC (1983) Stable isotopes in calcareous nannofossils: potential application to deep-sea paleoenvironmental reconstructions during the Quaternary. In: Meulenkamp JE (ed) Reconstruction of Marine Paleoenvironments. Utrecht Micropa-leontol Bull 30: 189–204

    Google Scholar 

  • Bains S, Corfield R, Norris RD (1999) Mechanisms of climate warming at the end of the Paleocene. Science 285: 724–727

    Article  Google Scholar 

  • Barber RT, Murray JW, McCarthy JJ (1991) Biogeochemical interactions in the equatorial Pacific. Ambio 23: 62–66

    Google Scholar 

  • Bard E (2001) Comparison of alkenone estimates with other paleotemperature proxies. Geochem Geophy Geosy 2 paper number 20000GC000050.

    Google Scholar 

  • Bidigare RR, Fluegge A, Freeman KH, Hanson KL, Hayes JM, Hollander D, Jasper JP, King L, Laws EA, Milder J, Millero FJ, Pancost RD, Popp BN, Steinberg PA, Wakeham SG (1997) Consistent fractionation of 13C in nature and in the laboratory: Growth rate effects in some haptophyte algae. Global Biogeochem Cy 11: 279–292

    Article  Google Scholar 

  • Bijma J, Spero HJ, Lea DW (1991) Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (Experimental Results). In: Fisher G, Wefer G (eds) Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer-Verlag Berlin Heidelberg, pp 489–512

    Google Scholar 

  • Boyle EA (1988) Cadmium; chemical tracer of deepwater paleoceanography. Paleoceanography 3: 471–489

    Article  Google Scholar 

  • Bralower T (2002) Evidence for surface water oligotrophy during the Late Paleocene Thermal Maximum: nannofossil assemblage data from ocean drilling program site 690, Maud Rise, Weddell Sea. Paleoceanography 17(2): 10.1029/2001PA000662

    Google Scholar 

  • Brasscil SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: A new tool for climate assessment. Nature 320: 129–133

    Article  Google Scholar 

  • Broecker W (1971) A kinetic model for the chemical composition of seawater. Quaternary Res 1: 188–207

    Article  Google Scholar 

  • Brownlee C, Nimer N, Dong LF, Merrett JM (1994) Cellular regulation during calcification in Emiliania huxleyi. Green JC, Leadbeater BSC (eds) The Haptophyte Algae. Systematics Association Special Volume No. 51, Clarendon Press, Oxford, pp 133–148

    Google Scholar 

  • Carpenter SJ, Lohmann KC (1992) Sr/Ma ratios of modern marine calcite: Empirical indicators of ocean chemistry and precipitation rate. Geochim Cosmochim Ac 56: 1837–1849

    Article  Google Scholar 

  • Chavez FP, Buck KR, Barber RT (1990) Phytoplankton taxa in relation to primary production in the equatorial Pacific. Deep-Sea Res 37: 1733–1752

    Article  Google Scholar 

  • Chavez FP, Buck KR, Service SK, Newton J, Barber RT (1998) Phytoplankton variability in central and eastern tropical Pacific. Deep-Sea Res 43: 835–870

    Google Scholar 

  • Conte M-H, Thomson A, Lesley D, Harris RP (1998) Genetic and physiological influences on the alkenone/alkenonate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica. Geochim Cosmochim Ac 62: 51–68

    Article  Google Scholar 

  • Dansgaard W (1961) Isotope systematics in high latitude precipitation. Tellus 16: 437–468

    Google Scholar 

  • De Villiers S (1999) Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans. Earth Planet Sc Lett 171: 623–634

    Article  Google Scholar 

  • Dickens GR (2001) Carbon addition and removal during the Late Paleocene Thermal Maximum: basic theory with a preliminary treatment of the isotope record at ÖDP Site 1051, Blake Nose. In: Kroon D, Noms RD, Klaus A (eds) Western North Atlantic Pa-leogene and Cretaceous Paleoceanography. Geological Society of London Spec Pub 183: 293–305

    Google Scholar 

  • Dudley WC, Goodney DE (1979) Oxygen isotope analyses of coccoliths grown in culture. Deep-Sea Res 26 (A): 495–503

    Article  Google Scholar 

  • Dudley WC, Nelson CS (1989) Quaternary surface-water stable isotope signal from calcareous nannofossils at DSDP Site 593, southern Tasman Sea. Mar Micropaleontol 13: 353–373

    Article  Google Scholar 

  • Dudley WC, Duplessy JC, Blackwelder PL, Brand LE, Guillard RRL (1980) Coccoliths in Pleistocene-Holocene nannofossil assemblages. Nature 285: 222–223

    Article  Google Scholar 

  • Dudley WC, Blackwelder P, Brand L, Duplessy JC (1986) Stable isotopic composition of coccoliths. Mar Micropaleontol 10: 1–8

    Article  Google Scholar 

  • Eglinton TI, Conte MH, Eglinton G, Hayes JM (2001) Proceedings of a workshop on alkenone-based paleoceanographic indicators. Geochem Geophy Geosy 2: 2000GC000 122

    Article  Google Scholar 

  • Emiliani C (1954) Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. Am J Sci 252: 149–158

    Article  Google Scholar 

  • Epstein BL, D’Hondt S, Quinn JG, Zhang J, Hargraves PE (1998) An effect of dissolved nutrient concentrations on alkenone-based temperature estimates. Paleoceanography 13:122–126

    Article  Google Scholar 

  • Farrimond P, Eglinton G, Brassell SC (1986) Alkenones in Cretaceous black shales, Blake-Bahama Basin, Western North Atlantic. Org Geochem 10: 897–903

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intracellular carbon dioxide concentration in leaves. Ast J Plant. Physiol 9: 121–137

    Article  Google Scholar 

  • Francois R, Honjo S, Krishfield R, Manganini S (2002) Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochem Cy 16: doi: 10.1029/2001GB001722

    Google Scholar 

  • Goodney DE, Margolis SV, Dudley WC, Kroopnick P, Williams DF (1980) Oxygen and carbon isotopes of Recent calcareous nannofossils as paleoceanographic indicators. Mar Micropaleontol 5: 31–42

    Article  Google Scholar 

  • Hastings DW, Emerson SR, Mix AC (1996) Vanadium in foraminiferal calcite as a tracer for changes in the areal extent of reducing sediments. Paleoceanography 11: 665–678

    Article  Google Scholar 

  • Jasper JP, Hayes JM (1990) A carbon isotope record of CO2 levels during the late Quaternary. Nature 347: 462–464

    Article  Google Scholar 

  • Jasper JP, Hayes JM, Mix AC, Prahl FG (1994) Photo synthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years. Paleoceanography 9: 781–798

    Article  Google Scholar 

  • Keller K, Morel FMM (1999) A model of carbon isotope discrimination and active carbon uptake in phytoplankton. Mar Ecol-Prog Ser 182: 295–298

    Article  Google Scholar 

  • Laws EA, Popp BN, Bidigare RR, RiebeScil U, Burkhardt S, Wakeham SG (2001) Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algae. Geochem Geophy Geosy 2: 2002GC000057

    Google Scholar 

  • Lea DW, Boyle EA (1993) Constraints on the alkalinity and circulation of glacial circum-polar deep water from benthic foraminiferal barium. Global Biogeochem Cy 7: 695–710

    Article  Google Scholar 

  • Lea DW, Mashiotta TA, Spero HJ (1999) Controls on magnesium and strontium uptake in planktic foraminifera determined by live culturing. Geochim Cosmochim Ac 63: 2369–2379

    Article  Google Scholar 

  • Lear CH, Elderfield H, Wilson PA (2003) A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes. Earth Planet Sc Lett 208: 69–84

    Article  Google Scholar 

  • Lorens RB (1981) Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim Cosmochim Ac 45: 553–561

    Article  Google Scholar 

  • Malone MJ, Baker PA (1999) Temperature dependence of the strontium distribution coefficient in calcite: an experimental study from 40° to 200°C and application to natural di-agenetic calcites. J Sediment Res 69: 216–223

    Article  Google Scholar 

  • Margolis SV, Kroopnick PM, Goodney DE, Dudley WC, Mahoney ME (1975) Oxygen and carbon isotopes from calcareous nannofossils as paleoceanographic indicators. Science 189:555–557

    Article  Google Scholar 

  • Marlowe IT, Green JC, Neal AC, Brassell SC, Eglinton G, Course PA (1984) Long chain (n-C37-C39) alkenones in the Prymnesiophyceae: Distribution of alkenones and other lipids an their taxonomic significance. Br Phycol J 19: 203–216

    Article  Google Scholar 

  • Marlowe IT, Brassell SC, Eglinton G, Green JC (1990) Long-chain alkenones and alkenonates and the fossil coccolith record of marine sediments. Chem Geol 88: 349–375

    Article  Google Scholar 

  • McConnaughey T (1989a) 13C and 18O isotopic disequilibrium in biological carbonates; I, Patterns. Geochim Cosmochim Ac 53: 151–162

    Article  Google Scholar 

  • McConnaughey T (1989b) 13C and 18O isotopic disequilibrium in biological carbonates; II, In vitro simulation of kinetic isotope effects. Geochim Cosmochim Ac 53: 163–171

    Article  Google Scholar 

  • McConnaughey TA, Burdett J, Whelan JF, Pauli CK (1997) Carbon isotopes in biological carbonates; respiration and photosynthesis. Geochim Cosmochim Ac 61: 611–622

    Article  Google Scholar 

  • Minoletti F, Gardin S, Nicot E, Renard M, Spezzaferri S (2001) Mise au point d’un protocole experimental de separaton granulometrique d’assemblages de nannofossiles calcaires; applications paleoecologiques et geochimiques. Bulletin Societié Géologique France 172: 437–446

    Article  Google Scholar 

  • Muller PJ, Kirst G, Ruhland G, von Storch I, Rosell-Mele A (1998) Calibration of the alkenone paleotemperature index U37K, based on core-tops from the eastern southern South Atlantic and the global ocean (60N – 60S). Geochim Cosmochim Ac 62: 1757–1772

    Article  Google Scholar 

  • Nürnberg D, Bijma J, Hemleben C (1996) Assessing the reliability of magnesium in fora-miniferal calcite as a proxy for water mass temperatures. Geochim Cosmochim Ac 60: 803–814

    Article  Google Scholar 

  • Ohkouchi N, Eglinton T, Keigwin L, Hayes JM (2002) Spatial and temporal offsets between proxy records in a sediment drift. Science 298: 1224–1227

    Article  Google Scholar 

  • O’Neil JR, Clayton RN, Mayeda T (1969) Oxygen isotopic fractionation in divalent metal carbonates. J Chem Phys 51: 5547–5550

    Article  Google Scholar 

  • Ostlund HG, Craig H, Broecker WS, Spenser D (1987) GEOSECS Atlantic, Pacific and Indian Ocean expeditions. Shorebased Data and Graphics, vol. 7, Tech. rep., Nat Sci Found, Washington, D.C.

    Google Scholar 

  • Pauli CK, Thierstein HR (1987) Stable isotopic fractionation among particles in Quaternary coccolith-sized deep sea sediments. Paleoceanography 2: 423–429

    Article  Google Scholar 

  • Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Ac 62: 69–77

    Article  Google Scholar 

  • Paquette J, Reeder RJ (1995) Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim Cosmochim Ac 59: 735–749

    Article  Google Scholar 

  • Rickaby R, Elderfield H (1999) Planktic foraminiferal Cd/Ca: paleonutrients or paleotemperature? Paleoceanography 14: 293–303

    Article  Google Scholar 

  • Rickaby REM, Schrag DP, Zondervan I, Riebesell U (2002) Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi. Global Biogeochem Cy 16: 1–8

    Article  Google Scholar 

  • Rosenthal Y, Stoll HM, Wyman K, Falkowski P (2000) Growth Related Variations in Carbon Isotopic Fractionation and Coccolith Chemistry in Emiliania huxleyi. Trans AGU 81, Ocean Sciences Meeting, EOS Washington D.C.

    Google Scholar 

  • Rost B, Zondervan I, Riebesell U (2002) Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi. Limnol Oceanogr 47: 120–128

    Article  Google Scholar 

  • Russell A, Emerson S, Nelson B, Erez J, Lea DW (1994) The use of foraminiferal uranium/ calcium ratios as an indicator of changes in seawater uranium content. Geochim Cosmochim Ac 58: 671–681

    Article  Google Scholar 

  • Siesser WG (1977) Mineralogy and diagenesis of some South African coastal and marine sediments. Mar Geol 10: 15–38

    Article  Google Scholar 

  • Shuter B (1979) A model of physiological adaptation in unicellular algae. J Theor Biol 78: 519–552

    Article  Google Scholar 

  • Sikes CS, Wilbur KM (1980) Calcification by coccolithophorids: effect of pH and Strontium. J Phycol 16: 433–436

    Article  Google Scholar 

  • Stoll HM, Bains S (2003) Coccolith Sr/Ca records of productivity during the Paleocene-Eocene Thermal Maximum from the Weddell Sea. Paleoceanography 18:1049, doi: 10.1029/2002PA000875

    Article  Google Scholar 

  • Stoll HM, Schrag DP (1998) Effect of Quaternary sea level cycles on the Sr budget of the ocean. Geochim Cosmochim Ac 62: 1107–1118

    Article  Google Scholar 

  • Stoll HM, Schrag DP (2000) Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate. Geochem Geophy Geosy 1:1999GC000015

    Google Scholar 

  • Stoll HM, Schrag DP (2001) Sr/Ca variations in Cretaceous carbonates: relation to productivity and sea level changes. Palaeogeogr Palaeocl 168: 311–336

    Article  Google Scholar 

  • Stoll H, Ziveri P (2002) Methods for separation of monospecific coccolith samples from sediments. Mar Micropaleontol 46: 209–221

    Article  Google Scholar 

  • Stoll HM, Schrag DP, Clemens SC (1999) Are seawater Sr/Ca variations preserved in Quaternary foraminifera? Geochim Cosmochim Ac 63: 3535–3547

    Article  Google Scholar 

  • Stoll HM, Ruiz-Encinar J, Garcia-Alonso JI, Rosenthal Y, Klaas C, Probert I (2001) A first look at paleotemperature prospects from Mg in coccolith carbonate: cleaning techniques and culture measurements. Geochem Geophy Geosy 2: 2000GC000144

    Google Scholar 

  • Stoll HM, Rosenthal Y, Falkowski P (2002a) Climate proxies from Sr/Ca of coccolith cal-cite: calibrations from continuous culture of Emiliania huxleyi. Geochim Cosmochim Ac 66: 927–936

    Article  Google Scholar 

  • Stoll HM, Ziveri P, Geisen M, Probert I, Young JR (2002b) Potential and limitations of Sr/Ca ratios in coccolith carbonate: new perspectives from cultures and monospecific samples from sediments. Philos T Roy Soc B 360: 719–747

    Article  Google Scholar 

  • Stoll HM, Klaas C, Probert IP, Ruiz-Encinar J, Garcia-Alonso JI (2002c) Calcification rate and temperature effects on Sr partitioning in coccoliths of multiple species of cocco-lithophorids in culture. Global Planet Change 34: 153–171

    Article  Google Scholar 

  • Takahashi T, Feely RA, Weiss RF, Wanninkopf RH, Chipman DW, Sutherland SC, Takahashi TT (1997) Global air-sea flux of CO2: An estimate based on measurement of sea-air pCO2 difference. P Natl Acad Sci USA 94: 8299–8929

    Google Scholar 

  • Tesoriero AJ, Pankow JF (1996) Solid solution partitioning of Sr+2, Ba+2, and Cd+2 to cal-cite. Geochim Cosmochim Ac 60: 1053–1063

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc (London): 562–581

    Google Scholar 

  • Watson EB (1996) Surface enrichment and trace-element uptake during crystal growth. Geochim Cosmochim Ac 60: 5013–5020

    Article  Google Scholar 

  • Watson EB, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am Mineral 80: 1179–1995

    Google Scholar 

  • Young JR, Davis SA, Bown PR, Mann S (1999) Coccolith ultrastructure and biomineralization. J Struct Biol 126: 195–215

    Article  Google Scholar 

  • Zeebe RE (1999) An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochim Cosmochim Ac 63: 2001–2007

    Article  Google Scholar 

  • Ziveri P, Stoll HM, Probert I, Klaas C, Geisen M, Ganssen G, Young J (2003) Stable isotope vital effects in coccolith calcite. Earth Planet Sc Lett 210: 137–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stoll, H.M., Ziveri, P. (2004). Coccolithophorid-based geochemical paleoproxies. In: Thierstein, H.R., Young, J.R. (eds) Coccolithophores. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06278-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06278-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06016-8

  • Online ISBN: 978-3-662-06278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics