Skip to main content

Plankton community behavior on ecological and evolutionary time-scales: when models confront evidence

  • Chapter
Coccolithophores

Summary

Processes of current and past global change have been successfully identified and modeled by treating the earth as a physical or chemical system. Quantitative characterization of global change in the biota lags far behind. Units of measurement include biomass, productivity, abundance, diversity and species longevity. The response time to forcings of the physical and chemical systems range from seasons to a few thousand years. Response times of quantifiable aspects of the biosphere, however, may range from the ecological time-scale of days up to the evolutionary time-scale of millions of years.

The models used by ecologists and evolutionists focus both on characterizing the type and extent of abiotic and biotic processes acting on living and on evolving populations of organisms. The spacial and temporal scales to be considered in studies of ecological and evolutionary controls, however, are vastly different.

Investigations of the seasonal dynamics of coccolithophores document their strong correlation with changes of the physical-chemical environment (bottom-up control). A few detailed stratigraphic studies indicate that physical forcing also operated on evolutionary time-scales. Although commonly observed in living communities and laboratory experiments, the quantification of the influence of biotic forcing (top-down) by organism-organism interactions (grazing, predation, competition, infection) in ecology and particularly in paleontology, remains elusive. Difficulties in reconciling plankton diversity and longevity with commonly accepted ecological and evolutionary theory underscores the need for better understanding basic behaviors of the biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous/Tertiary extinction. Science 208: 1095–1180

    Article  Google Scholar 

  • Barthlott W, Biedinger N, Braun G, Feig F, Kier G, Mutke J (1999) Terminological and methodological aspects of the mapping and analysis of global biodiversity. Acta botanica fennica 162: 103–110

    Google Scholar 

  • Berger WH (1976) Biogenous deep sea sediments: production, preservation and interpretation. In: Riley JP, Chester R (eds) Chemical Oceanography Vol. 5. Academic Press, London, pp 265–388

    Google Scholar 

  • Berggren WA, Kent DV, Aubry MP, Hardenbol J (eds) (1995) Geochronology, time-scales and global stratigraphic correlation. SEPM Spec Pub 54: 129–212

    Google Scholar 

  • Bollmann J, Baumann KH, Thierstein HR (1998) Global dominance of Gephyrocapsa coccoliths in the late Pleistocene: Selective dissolution, evolution, or global environmental change? Paleoceanography 13: 517–529

    Article  Google Scholar 

  • Boltovskoy D (1999) Radiolaria Polycystina. In: Boltovskoy D (ed) South Atlantic Zooplankton. Vol. I, Backhuys Publishers, Leiden, pp 149–212

    Google Scholar 

  • Bown PR, Burnett JA, Gallagher LT (1992) Calcareous nannoplankton evolution. Mem Scienze Geologiche Spec Vol 43: 1–17

    Google Scholar 

  • Bralower TJ, Monechi S, Thierstein HR (1989) Calcareous nannofossil zonation of the Jurassic-Cretaceous boundary interval and correlation with the geomagnetic polarity time-scale. Mar Micropaleontol 14: 153–235

    Article  Google Scholar 

  • Broecker WS, Peng TH (1982) Tracers in the Sea. Lamont-Doherty Geological Observatory of Columbia University, Palisades, N.Y.

    Google Scholar 

  • Broerse ATC, Ziveri P, Hinte JE Van, Honjo S (2000) Coccolithophore export production, species composition, and coccolith-CaCO3 fluxes in the NE Atlantic (34°N 21°W and 48°N 21°W). Deep-Sea Res II 47: 1877–1905

    Article  Google Scholar 

  • Busson G, Noel D (1991) Les calcaires fins pélagiques des temps liasiques sont primordialement faits d’une espèce du nannophytoplancton calcaire: la schizosphère S. punctulata. C R Acad Sci Paris 313/11: 795–800

    Google Scholar 

  • Buzas MA, Culver SJ (1984) Species duration and evolution – benthic foraminifera on the Atlantic continental margin of North-America. Science 225: 829–830

    Article  Google Scholar 

  • CLIMAP Project Members (1976) The surface of the ice-age Earth. Science 191: 1131–1137

    Article  Google Scholar 

  • Committee for the Global Atmospheric Research Program (1975) Understanding climatic change, a program for action. National Research Council, U.S. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Cortés MY (1998) Coccolithophores at the time series station ALOHA, Hawaii: population dynamics and ecology. PhD dissertation, University of Zürich.

    Google Scholar 

  • Cortés MY, Bollmann J, Thierstein H (2001) Coccolithophore ecology at the HOT station ALOHA Hawaii. Deep-Sea Res II 48: 1957–1981

    Google Scholar 

  • Courtillot V (1994) Mass extinctions in the last 300 million years: one impact and seven flood basalts? Isr J Earth Sci 43: 255–266

    Google Scholar 

  • Crouch EM, Heilmann-Clausen C, Brinkhuis H, Morgans HEG, Rogers KM, Egger H, Schmitz B (2001) Global dinoflagellate event associated with the late Paleocene thermal maximum. Geology 29: 315–318

    Article  Google Scholar 

  • Culver SJ, Rawson PF (eds) (2000) Biotic response to global change. Cambridge University Press, Cambridge U.K.

    Google Scholar 

  • Daskalov G (2002) Overfishing drives a trophic cascade in the Black Sea. Mar Ecol Progr Ser 225: 53–63

    Article  Google Scholar 

  • Delmas RJ, Ascencio JM, Legrand M (1980) Polar ice evidence that atmospheric CO2 20’000 years BP was 50% of present. Nature 284: 155–157

    Article  Google Scholar 

  • Erba E (1994) Nannofossils and superplumes: The early Aptian “nannoconid crisis”. Paleoceanography 9: 483–501

    Article  Google Scholar 

  • Falkowski P, Scholes RJ., Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore III B, Pedersen T, Rosenthal Y, Scitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of Earth as a system. Science 290: 291–296

    Article  Google Scholar 

  • Fischer AG, Arthur MA (1977) Secular variations in the pelagic realm. SEPM Spec Pub 25: 19–50

    Google Scholar 

  • Fischer G, Wefer G (1999) Use of proxies in paleoceanography. Springer Verlag, Berlin

    Book  Google Scholar 

  • Gallois RW (1976) Coccolith blooms in the Kimmeridge Clay and origin of North Sea Oil. Nature 259: 473–475

    Article  Google Scholar 

  • Garrison RE, Fischer AG (1969) Deep-water limestones and radiolarites in the alpine Jurassic. SEPM Spec Pub 14: 20–55

    Google Scholar 

  • Gartner S (1977) Calcareous nannofossil biostratigraphy and revised zonation of the Pleistocene. Mar Micropaleontol 2: 1–25

    Article  Google Scholar 

  • Haidar AT, Thierstein HR (2001) Coccolithophore dynamics off Bermuda (N. Atlantic). Deep-Sea Res II 48: 1925–1956

    Article  Google Scholar 

  • Hemleben C, Spindler M, Anderson RO (1989) Modern Planktonic Foraminifera. Springer-Verlag, New York

    Book  Google Scholar 

  • Heywood VH, Watson RT (1995) Global Biodiversity Assessment. Cambridge Univ Press

    Google Scholar 

  • Hildebrand AR, Penfield GT, Kring DA, Pilington M, Camargo ZA, Jacobsen SB, Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19: 867–871

    Article  Google Scholar 

  • Holligan PM, Fenández E, Aiken J, Balch WM, Boyd P, Berkill PH, Finch M, Groom SB, Malin G, Muller K, Purdie DA, Robinson C, Trees CC, Turner SM, Van der Wal P (1993) A biogeochemical study of the coccolithophore Emiliania huxleyi in the North Atlantic. Global Biogeochem Cy 7: 879–900

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 45: 137–145

    Article  Google Scholar 

  • Imbrie J, Kipp NG (1971) A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. In: Turekian KK (ed) The late Cenozoic ice ages. Yale Univ. Press, New Haven, pp 71–181

    Google Scholar 

  • Jordan RW, Kleijne A (1994) A classification system for living coccolithophores. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge Univ Press, Cambridge, pp 83–105

    Google Scholar 

  • Knappertsbusch M (1993) Geographic distribution of living and Holocene coccolithophores in the Mediterranean Sea. Mar Micropaleontol 21: 219–247

    Article  Google Scholar 

  • Koblents-Mishke OH, Vokovinsky VV, Kabanova YG (1970) Plankton primary production of the world ocean. In: Wooster WS (ed) Scientific Exploration of the South Pacific. Nat. Acad. Sciences, Washington D.C., pp 183–193

    Google Scholar 

  • Koeberl C, MacLeod KG (eds) (2002) Catastrophic events and mass extinctions: impacts and beyond. Geol Soc Am Spec Pap 356

    Google Scholar 

  • Leckie RM, Bralower TJ, Cashman R (2002) Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17/3, 10.1029/2001PA000623,2002

    Google Scholar 

  • Li, WKW (2002) Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419: 154–157

    Article  Google Scholar 

  • Lieth H (1973) Primary production: terrestrial ecosystems. Hum Ecol 1: 303–332

    Article  Google Scholar 

  • Lipps JH (1970) Plankton evolution. Evolution 24: 1–22

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London

    Book  Google Scholar 

  • Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1: 493–509

    Google Scholar 

  • May R, Lawton JH, Stork NE (1995) Assessing extinction rates. In: Lawton JH, May RM (eds) Extinction Rates. Oxford Univ Press, pp 1–24

    Google Scholar 

  • McGowan JA, Walker PW (1993) Pelagic diversity patterns. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. Univ Chicago Press, Chicago, pp 203–214

    Google Scholar 

  • Montanari A, Koeberl C (2000) Impact stratigraphy: the Italian record. Springer Verlag, Berlin

    Google Scholar 

  • Niklaus PA, Leadley PW, Schmid B, Körner C (2001) A long-term field study × biodiversity and elevated CO2 interactions in grassland. Ecol Monogr 71: 341–356

    Google Scholar 

  • Norris RD (2000) Pelagic species diversity, biogeography, and evolution. Paleobiology Supp Vol 26/4: 236–258

    Article  Google Scholar 

  • Okada H, Honjo S (1973) The distribution of oceanic coccolithophorids in the Pacific. Deep-Sea Res 20: 355–374

    Google Scholar 

  • Pálfi J, Demény A, Haas J, Hetényi M, Orchard MJ, Veto I (2001) Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29: 1047–1050

    Article  Google Scholar 

  • Rankama K, Sahama TG (1950) Geochemistry. Univ. Chicago Press, Chicago

    Google Scholar 

  • Röhl U, Bralower TJ, Norris RD, Wefer G (2000) New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28: 927–930

    Article  Google Scholar 

  • Rutherford S, D’Hondt S, Prell W (1999) Environmental controls on the geographic distribution of Zooplankton diversity. Nature 400: 749–753

    Article  Google Scholar 

  • Ruddiman, WF (2001) Earth’s climate: past and future. WH Freeman, New York

    Google Scholar 

  • Sarmiento JL, Gruber N (2002) Sinks for anthropogenic carbon. Phys Today 55/8: 30–36

    Article  Google Scholar 

  • Schippers P, Verschoor AM, Vos M, Mooij WM (2001) Does “supersaturated coexistence” resolve the “paradox of the plankton”? Ecol Lett 4: 404–407

    Article  Google Scholar 

  • Schott W (1935) Die Foraminiferen aus dem aequatorialen Teil des Atlantischen Ozeans. Deutsch Atl Exped. Meteor 1925–1927, 3: 34–134

    Google Scholar 

  • Schrader HJ, Schuette G (1981) Marine Diatoms. In: Emiliani C (ed) The Sea, John Wiley & Sons, New York, 7: 1179–1232

    Google Scholar 

  • Siesser WG, Bralower TJ, De Carlo EH (1992) Mid-Tertiary Braarudosphaera-rich sediments on the Exmouth Plateau. Proc ODP Scientific Results, 122: 653–663

    Google Scholar 

  • Sommer U (1993) Phytoplankton competition in Plusssee: A field test of the resource-ratio hypothesis. Limnol. Oceanogr. 38: 838–845

    Article  Google Scholar 

  • Spencer-Cervato C (1999) The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database. Paleontologica Electronica 2/2

    Google Scholar 

  • Stenseth NC, Maynard Smith J (1984) Coevolution in ecosystems: Red Queen evolution or stasis? Evolution 38: 870–880

    Article  Google Scholar 

  • Takahashi K (1991) Radiolaria: Flux, ecology, and taxonomy in the Pacific and Atlantic. In: Honjo S (ed) Ocean Biocoenosis. Woods Hole Oceanographic Institution Press, No. 3

    Google Scholar 

  • Tappan H, Loeblich AR (1972) Fluctuating Rates of Protistan Evolution, Diversification and Extinction. 24th IGC, Section 7: 205–213

    Google Scholar 

  • Thierstein HR (1979) Paleoceanographic implications of organic carbon and carbonate distribution in Mesozoic deep-sea sediments. Maurice Ewing Series, Am Geophys Union (Washington DC) 3: 249–274

    Google Scholar 

  • Thierstein HR (1981) Late Cretaceous nannoplankton and the change at the Cretaceous-Tertiary boundary. SEPM Spec Pub 32: 355–394

    Google Scholar 

  • Thierstein HR, Geitzenauer K, Molfino B, Shackleton NJ (1977) Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes. Geology 5: 400–404

    Article  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theor 1: 1–30

    Google Scholar 

  • Venrick EL (1999) Phytoplankton species structure in the central North Pacific, 1973–1996: variability and persistence. J Plankton Res 21: 1029–1042

    Article  Google Scholar 

  • Verity PG, Smetacek V (1996) Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar Ecol Progr Ser 130: 277–293

    Article  Google Scholar 

  • Watson RT, Rhode H, Oeschger H, Siegenthaler U (1990) Greenhouse gases and aerosols. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate Change: the IPCC Scientific Assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Wei KY, Kennett JP (1983) Nonconstant extinction rates of Neogene planktonic foraminifera. Nature 305: 218–220

    Article  Google Scholar 

  • Wilson, EO (1992) The diversity of life. Harvard University Press, MA

    Google Scholar 

  • Worm B, Lotze HK, Hildebrand H, Sommer U (2002) Consumer versus resource control of species diversity and ecosystem functioning. Nature 417: 848–851

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thierstein, H.R., Cortés, M.Y., Haidar, A.T. (2004). Plankton community behavior on ecological and evolutionary time-scales: when models confront evidence. In: Thierstein, H.R., Young, J.R. (eds) Coccolithophores. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06278-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06278-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06016-8

  • Online ISBN: 978-3-662-06278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics