Advertisement

Biogeography of selected Holocene coccoliths in the Atlantic Ocean

  • Patrizia Ziveri
  • Karl-Heinz Baumann
  • Babette Böckel
  • Jörg Bollmann
  • Jeremy R. Young
Chapter

Summary

In this chapter we present a revision of the biogeographical distribution of five coccolithophorid species (Coccolithus pelagicus, Calcidiscus leptoporus, Heli-cosphaera carteri, Syracosphaera pulchra and Umbilicosphaera sibogae) and the genus Gephyrocapsa in the Atlantic Ocean. The mapping is based on surface sediment samples. Each of the taxa considered here constitutes an unambiguous morphological group ideal for rapid low taxonomic resolution analysis of assemblages, which is a tempting strategy for ecological and paleoecological analysis of assemblages. However, in each case recent research has indicated that these broad taxa are in fact composed of several discrete species, or sub-species. The clearest example is C. pelagicus, with discrete morphotypes in sub-Arctic and temperate upwelling areas. For Gephyrocapsa and Umbilicosphaera the separation is less obvious but still unambiguous. Species separation is manifestly essential to understanding the biogeography of these taxa. For H. carteri and S. pulchra the mapped distributions are relatively straightforward and we do not yet know how they relate to the recently proven genotypic variation within the taxa.

At high latitudes temperature and productivity belts parallel each other and the effects are difficult to distinguish. At lower latitudes however, the effects are more clearly separable – it is for instance obvious that S. pulchra shows a warm water low productivity preference whilst H. carteri shows a warm water higher productivity distribution. In particular there are several cases where distribution patterns in the North and South Atlantic are strikingly different. These include the absence of C. pelagicus in the sub-Antarctic; the much higher abundance of C. leptoporus in temperate South Atlantic than North Atlantic; much higher abundance of U. sibogae var. sibogae in the oligotrophic South Atlantic than the North Atlantic. The Calcidiscus and Umbilicosphaera patterns are more symmetric, since the North and South Atlantic show broadly similar sets of environments in terms of temperature, salinity, productivity and macronutrients (nitrate, phosphate and silicate). Obvious possible hypotheses are that the populations in the two oceans are sufficiently separated to have evolved slightly different ecological tolerances or that an additional factor, such as a trace element is responsible for the distribution contrasts. More generally we suspect that the comparably broad coccolithophorid bio-geographic zones in all oceans and the absence of obvious vicariance in coccolith species distributions may have prevented recognition of significant contrasts between oceans, although such contrasts may provide key clues for interpreting past temporal shifts in assemblages.

Keywords

Atlantic Ocean South Equatorial Current Agulhas Current Calcareous Nannoplankton North Equator Counter Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andruleit H, Rogalla U (2002) Coccolithophores in surface sediments of the Arabian Sea in relation to environmental gradients in surface waters. Mar Geol 31 (32): 1–22Google Scholar
  2. Baumann K-H, Andruleit H, Samtleben C (2000). Coccolithophores in the Nordic Seas: Comparison of living communities with surface sediment assemblages. Deep-Sea Res II 47: 1743–1772CrossRefGoogle Scholar
  3. Blasco D, Estrada M, Jones B (1980) Relationship between the phytoplankton distribution and composition and the hydrography in the northwest African upwelling region near Cabo Corbeiro. Deep-Sea Res Part A, Oceanographic research papers 27: 799–821Google Scholar
  4. Böckel B, Baumann K-H, Henrich R, Kinkel H (subm) Distribution patterns of coccoliths in South Atlantic and Southern Ocean surface-sediments in relation to environmental gradients. Palaeogeogr PalaeoecolGoogle Scholar
  5. Bollmann J (1997) Morphology and biogeography of the genus Gephyrocapsa coccoliths in Holocene sediments. Mar Micropaleontol 29: 319–350CrossRefGoogle Scholar
  6. Bollmann J, Baumann KH, Thierstein HR (1998) Global dominance of Gephyrocapsa coccoliths in late Pleistocene: Selective dissolution, evolution, or global environmental change? Paleoceanography 13: 517–529.CrossRefGoogle Scholar
  7. Brand LE (1994) Physiological ecology of marine coccolithophores. In: Winter A, Siesser W (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 39–49Google Scholar
  8. Broerse ATC, Brummer G-JA, Van Hinte JE (2000) Coccolithophore export production in response to monsoonal upwelling off Somalia (northwestern Indian Ocean). Deep-Sea Res II 47: 2179–2205Google Scholar
  9. Cachao M, Moita MT (2000) Coccolithus pelagicus, a. productivity proxy related to moderate fronts off Western Iberia. Mar Micropaleontol 39 (1–4): 131–155CrossRefGoogle Scholar
  10. CLIMAP (1976) The surface of the ice-age Earth. 191: 1131–1144Google Scholar
  11. CLIMAP (1981) Seasonal reconstruction of the Earth’s surface at the last glacial maximum. Geol Soc Am Map and Chart Series MC-36: 1–18Google Scholar
  12. CLIMAP (1984) The last interglacial ocean. Quaternary Res 21: 123–224CrossRefGoogle Scholar
  13. Conkright ME, Locarnini RA, Garcia HE, O’Brien TD, Boyer TP, Stephens C, Antonov JI (2002): World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, CD-ROM Documentation. National Oceanographic Data Center, Silver Spring, MDGoogle Scholar
  14. Dietrich G, Kalle K, Krauss W, Siedler G (1980) General Oceanography, John Wiley, New YorkGoogle Scholar
  15. Eide LK (1990) Distribution of coccoliths in surface sediments in the Norwegian-Greenland Sea. Mar Micropaleontol 16: 65–75CrossRefGoogle Scholar
  16. Fincham MJ, Winter A (1989) Paleoceanographic interpretations of coccoliths and oxygen isotopes from sediments from the surface of the Southwest Indian Ocean. Mar Micropaleontol 13: 325–351CrossRefGoogle Scholar
  17. Findlay CS, Giraudeau J (2001) Extant calcareous nannoplankton in the Australian sector of the Southern Ocean (austral summers 1994 and 1995). Mar Micropaleontol 40 (4): 417–439CrossRefGoogle Scholar
  18. Findlay CS, Giraudeau J (2002) Movement of oceanic fronts south of Australia during the last 10 ka: interpretation of calcareous nannoplankton in surface sediments from the Southern Ocean. Mar Micropaleontol 893: 1–14Google Scholar
  19. Flores JA, Gersonde R, Sierro FJ (1999) Pleistocene fluctuations in the Agulhas Current Retroflection based on the calcareous plankton record. Mar Micropaleontol 37: 1–22CrossRefGoogle Scholar
  20. Gard G (1987) Late Quaternary calcareous nannofossil bio stratigraphy and sedimentation patterns: Fram Strait, Arctica. Paleoceanography 2/5: 519–529CrossRefGoogle Scholar
  21. Geisen M, Billard C, Broerse ATC, Cros L, Probert I, Young JR (2002) Life-cycle associations involving pairs of holococcolithophorid species – Intraspecific variation or cryptic speciation? Eur J Phycol 37: 531–550CrossRefGoogle Scholar
  22. Geitzenauer KR, Roche, MB, McIntyre A (1977) Coccolith biogeography from North Atlantic and Pacific surface sediments. In: Ramsey ATS (ed) Oceanic Micropalaeontology, Academic Press, London, pp 973–1008Google Scholar
  23. Giraudeau J (1992) Distribution of recent nannofossils beneath the Benguela system: southwest African continental margin. Mar Geol 108: 219–237CrossRefGoogle Scholar
  24. Giraudeau J, Monteiro MS, Nikodemus K (1993) Distribution and malformation of living coccolithophores in the northern Benguela upwelling system off Namibia. Mar Micropaleontol 22: 93–110CrossRefGoogle Scholar
  25. Hallegraeff GM (1984) Coccolithophorids (Calcareous Nanoplankton) from Australian waters. Bot Mar 27: 229–247Google Scholar
  26. Houghton SD (1988) Thermocline control on coccolith diversity and abundance in recent sediments from the Celtic Sea and English Channel. Mar Geol 83: 311–319CrossRefGoogle Scholar
  27. Jordan RW, Young JR (1990) Proposed changes to the classification system of living Coccolithophorids. International Nannoplankton Association Newsletter 1 (12): 15–18Google Scholar
  28. Kinkel H, Baumann K-H, Cepek M (2000) Coccolithophores in the equatorial Atlantic Ocean. Mar Biol 54: 319–328Google Scholar
  29. Kleijne A, Kroon D, Zevenboom W (1989) Phytoplankton and foraminiferal frequencies in northern Indian Ocean and Red Sea surface waters. Neth J Sea Res 24: 531–539CrossRefGoogle Scholar
  30. Knappertsbusch M (1993) Geographic distribution of living and Holocene coccolithophores in the Mediterranean Sea. Mar Micropaleontol 21: 219–247CrossRefGoogle Scholar
  31. Knappertsbusch M, Brummer G-JA (1995) A sediment trap investigation of sinking coccolithophorids in the North Atlantic. Deep-Sea Res 142 (7): 1083–1109Google Scholar
  32. Knappertsbusch M, Cortés MY, Thierstein HR (1997) Morphologic variability of the coccolithophorid Calcidiscus leptoporus in the plankton, surface sediments and from the Early Pleistocene. Mar Micropaleontol 30: 293–317CrossRefGoogle Scholar
  33. Krauss W (1986) The North Atlantic Current. J Geophys Res 91 (C4): 5061–5074CrossRefGoogle Scholar
  34. Krauss W, Käse RH (1984) Mean circulation and eddy kinetic energy in the Eastern North Atlantic. J Geophys Res 89 (C3): 3407–3415CrossRefGoogle Scholar
  35. Lohmann H (1919) Die Bevölkerung des Ozeans mit Plankton nach den Ergebnissen des Zentrifugenfänge während der Ausreise der “Deutschland” 1911. Zugleich ein Beitrag zur Biologie des Atlantischen Ozeans. Archiv für Biontologie, 4 (3): 1–617Google Scholar
  36. Malinverno E, Ziveri P, Corselli C (in press) Coccolithophorid distribution in the Ionian Sea and its relationship to eastern Mediterranean circulation during late fall-early winter 1997. J Geophys ResGoogle Scholar
  37. McCartney MS (1994) A Primer on Ocean Currents. Measurements and Lingo of Physical Oceanographers. Oceanus 37: 3–4Google Scholar
  38. Mclntyre A, Bè AWH (1967). Modern coccolithophores from the Atlantic Ocean – I. Placoliths and cyrtoliths. Deep-Sea Res 14: 561–597Google Scholar
  39. Nishida S (1979) Atlas of Pacific Nannoplanktons. NOM (News of Osaka Micropaleontologists), Special Paper (3): 1–31Google Scholar
  40. Okada H, Honjo S (1973) The distribution of coccolithophorids in the Pacific. Deep-Sea Res 20: 355–374Google Scholar
  41. Okada H, McIntyre A (1979) Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean. Mar Biol 54: 319–328CrossRefGoogle Scholar
  42. Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Progr Oceanogr 26: 1–73CrossRefGoogle Scholar
  43. Pujos A (1988) Spatio-temporal distribution of some Quaternary coccoliths. Oceanologica Acta 11(1): 65–77Google Scholar
  44. Renaud S, Ziveri P, Broerse ATC (2002) Geographical and seasonal differences in morphology and dynamics of the coccolithophore Calcidiscus leptoporus. Mar Micropaleontol 890: 1–23Google Scholar
  45. Roth PH (1994) Distribution of coccoliths in oceanic sediments. In: Winter A, Siesser W.G. (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 199–218Google Scholar
  46. Sáez AG, Probert I, Geisen M, Quinn P, Young JR, Medlin LK (2003) Pseudo-cryptic speciation in coccolithophores. P Natl Acad Sci USA 100 (12): 7163–7168CrossRefGoogle Scholar
  47. Samtleben C, Baumann K-H, Schröder-Ritzrau A (1995) Distribution, composition and seasonal variation of coccolithophore communities in the northern North Atlantic. In: Flores JA, Sierro FJ (eds) Proceedings of the 5th INA Conference. Salamanca, pp 219–235Google Scholar
  48. Schneidermann N (1977) Selective dissolution of recent coccoliths in the Atlantic Ocean. In: Ramsey ATS (ed) Oceanic Micropalaeontology. Academic Press, London, pp 973–1008Google Scholar
  49. Shannon LV, Nelson G (1996) The Benguela: large scale features and processes and system variability. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic. Springer-Verlag, Berlin, Heidelberg, pp 163–210CrossRefGoogle Scholar
  50. Smythe-Wright D, Chapman P, Duncombe Rae C, Shannon LV, Boswell SM (1998) Characteristics of the South Atlantic subtropical frontal zone between 15°W and 5°E. Deep-Sea Res I 45: 167–192CrossRefGoogle Scholar
  51. Sprengel C, Baumann K-H, Henderiks J, Henrich R, Neuer S (2002) Modern coccolithophore and carbonate sedimentation along a productivity gradient in the Canary Islands region: seasonal export production and surface accumulation rates. Deep-Sea Res II 49 (17): 3577–3598CrossRefGoogle Scholar
  52. Verbeek JW (1989) Recent calcareous nannoplankton in the southernmost Atlantic. Polarforschung 59 (1/2): 45–60Google Scholar
  53. Young JR (1994) The functions of coccoliths. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, pp 63–82Google Scholar
  54. Winter A, Siesser WG (1994) Coccolithophores. Cambridge University Press, CambridgeGoogle Scholar
  55. Winter A, Jordan RW, Roth P (1994) Biogeography of living coccolithophores in ocean waters. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 161–177Google Scholar
  56. Ziveri P, Thunell RC (2000) Coccolithophore export production in Guaymas Basin, Gulf of California: response to climate forcing. Deep-Sea Res II 47: 2073–2100CrossRefGoogle Scholar
  57. Ziveri P, Thunell RC, Rio D (1995 a) Export production of coccolithophores in an up welling region: results from San Pedro Basin, Southern California Borderlands. Mar Micropaleontol 24: 335–358CrossRefGoogle Scholar
  58. Ziveri P, Thunell R, Rio D (1995b) Seasonal Changes in coccolithophore densities in the Southern California Bight during the 1991/1992 El Nino event. Deep-Sea Res I 42 11/12: 1881–1903Google Scholar
  59. Ziveri P, Rutten A, de Lange G, Thomson J, Corselli C (2000) Present-day coccolith fluxes recorded in central eastern Mediterranean sediment traps and surface sediments. Palaeogeogr Palaeoecol 158 (3–4): 175–195CrossRefGoogle Scholar
  60. Ziveri P, Kleijne A, Conte M, Weber J (2001) Coccolithophorid distribution and alkenone biomarker characterisation from the tropical Equatorial Atlantic. European Geophysical Society (EGS) XXVI General Assembly, Nice, FranceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Patrizia Ziveri
    • 1
  • Karl-Heinz Baumann
    • 2
  • Babette Böckel
    • 2
  • Jörg Bollmann
    • 3
  • Jeremy R. Young
    • 4
  1. 1.Department of Paleoclimatology and Paleoecology, Faculty of Life and Earth SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Fachbereich GeowissenschaftenUniversität BremenBremenGermany
  3. 3.Geological InstituteSwiss Federal Institute of TechnologyZurichSwitzerland
  4. 4.Palaeontology DepartmentThe Natural History MuseumLondonEngland

Personalised recommendations