Skip to main content

Coccolith contribution to South Atlantic carbonate sedimentation

  • Chapter

Summary

In order to assess the significance of calcifying organisms for the carbonate budget it is necessary to have reliable estimates of the relative proportion of carbonate production of the different organism groups. In this chapter we firstly review the carbonate distribution patterns of both bulk coccoliths and planktic foraminifera, estimated by means of different carbonate calculation techniques. These studies clearly reveal a variable pattern of carbonate sedimentation and accumulation for planktic foraminifera and coccolithophores, respectively. Whilst coccolith carbonate dominates the oligotrophic gyres of the South Atlantic, carbonate produced by planktic foraminifera is more important in more fertile, mesotrophic to eutrophic areas, such as the equatorial divergence zone. Mass estimates of coccolith carbonate burial in surface sediments of the South Atlantic document coccoliths to be major carbonate contributors in most mid-Atlantic Ridge sediments, exceeding up to 70 wt.-%. In contrast to these oligotrophic areas, they are of lesser importance in sediments accumulating on the continental margins, where they account for only a fifth of the carbonate fraction.

Based on estimates of mean coccolith masses, species-specific coccolith carbonate contributions were calculated for the South Atlantic Ocean. Even though absolute numbers of most species, particularly of Oolithotus fragilis, Rhabdo-sphaera clavigera, Coccolithus pelagicus, and Helicosphaera carteri are many times lower than total numbers of Emiliania huxleyi, these subordinate massively calcifying species contribute most to the coccolith carbonate. Despite the large cell numbers generated by E. huxleyi and F. profunda in the photic zone, as single species they are of minor importance to coccolithophore carbonate production. While absolute accumulation of coccolith carbonate in upwelling regions is estimated to be about three times higher than in the oligotrophic gyres, the latter areas are about 5–10 times larger globally. This means that total accumulation of coccolith-carbonate in oligotrophic areas exceeds by far that of the upwelling regimes and is therefore of prime importance in global carbonate burial budgets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andruleit H (1996) A filtration technique for quantitative studies of coccoliths. Micro-paleontology 42: 403–406

    Google Scholar 

  • Archer DE (1996) An atlas of the distribution of calcium carbonate in sediments of the deep sea. Global Biogeochem Cy 10: 159–174

    Article  Google Scholar 

  • Archer D, Emerson S, Reimers C (1989) Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results. Geochim Cosmochim Ac 53: 2831–2845

    Article  Google Scholar 

  • Arz HW, Pätzold J, Wefer G (1999) Climatic changes during the last déglaciation recorded in sediment cores from the northeastern Brazilian continental margin. Geo-Marine Lett 19: 209–218

    Article  Google Scholar 

  • Asmus T, Frank M, Koschmieder C, Frank N, Gersonde R, Kuhn G, Mangini A (1999) Variations of biogenic particle flux in the southern Atlantic section of the Subantarctic Zone during the Late Quaternary: Evidence from sedimentary 231Paeex and 230Thex. Mar Geol 159: 63–78

    Article  Google Scholar 

  • Balch WM, Drapeau DT, Fritz JJ (2000) Monsoonal forcing of calcification in the Arabian Sea. Deep-Sea Res II 47: 1301–1337

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329: 408–414

    Article  Google Scholar 

  • Baumann K-H, Cepek M, Kinkel H (1999) Coccolithophores as indicators of ocean water masses, surface-water temperature, and paleoproductivity – Examples from the South Atlantic. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: Examples from the South Atlantic. Springer Verlag, Berlin, Heidelberg, pp 117–144

    Chapter  Google Scholar 

  • Baumann K-H, Andruleit H, Samtleben C (2000) Coccolithophores in the Nordic Seas: Comparison of living communities with surface sediment assemblages. Deep-Sea Res II 47: 1743–1772

    Article  Google Scholar 

  • Baumann K-H, Böckel B, Donner B, Gerhardt S, Henrich R, Vink A, Volbers A, Willems H, Zonneveld KAF (in press) Contribution of calcareous plankton groups to the carbonate budget of South Atlantic surface sediments. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the Late Quaternary: reconstructions of material budget and current systems. Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • Berger WH (1985) CO2 increase and climate prediction: Clues from deep-sea carbonates. Episodes 8: 163–168

    Google Scholar 

  • Berger WH (1989) Global maps of ocean productivity. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the oceans: Present and past. J. Wiley & Sons, Chichester, pp 455–486

    Google Scholar 

  • Berger WH, Wefer G (1996) Central themes of South Atlantic Circulation. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic. Springer-Verlag, Berlin, Heidelberg, pp 1–11

    Chapter  Google Scholar 

  • Berger WH, Fischer K, Lai C, Wu G (1987) Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production. University of California, San Diego, SIO Reference 87–30, pp 1–67

    Google Scholar 

  • Berger WH, Lange CB, Wefer G (2002) Upwelling history of the Benguela-Namibia system: a synthesis of Leg 175 results. In: Wefer G, Berger WH, Richter (eds) Proc ODP Sci Res 175 Online. Available from World Wide Web: http://www-odp.tamu.edu/publications/175_IR/175TOC.HTM

    Google Scholar 

  • Bickert T (1992) Rekonstruktion der spätquartären Bodenwasserzirkulation im östlichen Südatlantik über stabile Isotope benthischer Foraminiferen. Ber FB Geowissensch Universität Bremen 27,205 pp

    Google Scholar 

  • Bickert T, Wefer G (1996) Late Quaternary deep water circulation in the South Atlantic: reconstruction from carbonate dissolution and benthic stable isotopes. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic. Springer-Verlag, Berlin, Heidelberg, pp 599–620

    Chapter  Google Scholar 

  • Bleil and cruise participants (1997) Report and preliminary results of Meteor-Cruise M38/2, Recife-Las Palmas, 4.3.–14.4.1996. Ber FB Geowissensch Univ Bremen 27, 126pp

    Google Scholar 

  • Böckel B, Baumann K-H (in press) Distribution of coccoliths in surface-sediments of the south-eastern South Atlantic Ocean: ecology, preservation and carbonate contribution. Mar Micropaleontol

    Google Scholar 

  • Böckel B, Baumann K-H, Henrich R, Kinkel H (subm) Distribution patterns of coccoliths in South Atlantic and Southern Ocean surface sediments in relation to environmental gradients. Deep-Sea Res (Reference at http://www.coccoco.ethz.ch)

  • Bown PR (1998) Calcareous nannofossil biostratigraphy. British Micropalaeontol Soc, Chapman and Hall, London

    Book  Google Scholar 

  • Brummer GJA, Van Eijden AJM (1992) “Blue ocean” paleoproductivity estimates from pelagic carbonate mass accumulation rates. Mar Micropaleontol 19: 99–117

    Article  Google Scholar 

  • Broecker WS, Peng TH (1986) Global carbon cycle. Radiocarbon 28: 309–327

    Google Scholar 

  • Broecker WS, Peng TH (1989) The cause of the glacial to interglacial atmospheric CO2 change: a polar alkalinity hypothesis. Global Biogeochem Cy 3: 215–239

    Article  Google Scholar 

  • Broerse ATC, Ziveri P, Van Hinte JE, Honjo S (2000) Coccolithophore export production, species composition, and coccolith-CaCO3 fluxes in the NE Atlantic (34°N 21°W and 48°N 21°W). Deep-Sea Res II 47: 1877–1905

    Google Scholar 

  • Brown CW, Yoder JA (1994) Coccolithophore blooms in the global ocean. J Geophys Res 99: 7467–7482

    Article  Google Scholar 

  • Buitenhuis E, Van Bleijswijk J, Bakker D, Veldhuis M (1996) Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea. Mar Ecol Prog Series 143: 271–282

    Article  Google Scholar 

  • Buitenhuis E, Van der Wal P, de Baar H (2001) Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide; a field and mesocosm study derived simulation. Global Biogeochem Cy 15: 577–588

    Article  Google Scholar 

  • Dittert N, Baumann K-H, Bickert T, Henrich R, Huber R, Kinkel H, Meggers H (1999) Carbonate dissolution in the deep-sea: methods, quantification, and paleocean-ographic application. In: Fischer G, Wefer G (eds) Use of Proxies in Paleoceanogra-phy: Examples from the South Atlantic. Springer-Verlag, Berlin, Heidelberg, pp 255–284

    Chapter  Google Scholar 

  • Esper O, Zonneveld KAF, Höll C, Karwath B, Kuhlmann H, Schneider RR, Vink A, Weise-Ihlo I, Willems H (2000) Reconstruction of palaeoceanographic conditions in the south Atlantic Ocean at the last two terminations based on calcareous dinoflag-ellate cysts. Intern J Earth Sciences 88: 680–693

    Article  Google Scholar 

  • Frank M, Gersonde R, Rutgers Van der Loeff MM, Kuhn G, Mangini A (1996) Late Quaternary sediment dating and quantification of lateral sediment redistribution applying 230Thex: a study from the eastern Atlantic sector of the Southern Ocean. Geol Rundsch 85: 554–566

    Article  Google Scholar 

  • Frank M, Gersonde R, Van der Loeff MR, Bohrmann G, Nürnberg CC, Kubik PW, Suter M, Mangini A (2000) Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: Multiproxy evidence and implications for glacial atmospheric CO2. Paleoceanography 15 (6): 642–658

    Article  Google Scholar 

  • Frenz M, Baumann K-H, Böckel B, Höppner R, Henrich R (subm) Quantification of foraminifer and coccolith carbonate in South Atlantic surface sediments by means of carbonate grain-size distributions. J Sediment Res. (Reference at http://www.coccoco.ethz.ch)

  • Gayoso AM (1995) Bloom of Emiliania huxleyi (Prymnesiophyceae) in the western South Atlantic Ocean. J Plankton Res 17: 1717–1722

    Article  Google Scholar 

  • Gerhardt S, Henrich R (2001) Shell preservation of Limacina inflata (Pteropoda) in surface sediments from the Central and South Atlantic Ocean: a new proxy to determine the aragonite saturation state of water masses. Deep-Sea Res 148: 2051–2071

    Google Scholar 

  • Gingele F, Dahmke A (1994) Discrete barite particles and barium as tracers of paleopro-ductivity in South Atlantic sediments. Paleoceanography 9: 151–168

    Article  Google Scholar 

  • Giraudeau J, Bailey GW, Pujol C (2000) A high-resolution time series analyses of particle fluxes in the northern Benguela coastal upwelling system: carbonate record of changes in production and particle transfer processes. Deep-Sea Res II 47: 1999–2028

    Google Scholar 

  • Haidar AT, Thierstein HR, Deuser WG (2000) Calcareous phytoplankton standing stocks, fluxes and accumulation in Holocene sediments off Bermuda (N. Atlantic). Deep-Sea Res II 47: 1907–1938.

    Article  Google Scholar 

  • Hales B, Emerson S (1997) Calcite dissolution in sediments of the Ceara Rise: In situ measurements of porewater O2, pH, and CO2(aq). Geochim Cosmochim Ac 61:501–514

    Article  Google Scholar 

  • Henrich R, Baumann K-H, Gerhardt S, Gröger M, Volbers A (in press) Carbonate preservation in deep and intermediate waters in the South Atlantic: evaluation and geologic record (a review). In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the Late Quaternary – Reconstruction of Material Budget and Current Systems. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Holligan PM, Viollier M, Harbour DS, Camus P, Champagne-Philippe M (1983) Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304: 339–342

    Article  Google Scholar 

  • Kennett JP (1982) Marine Geology. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Kinkel H, Baumann K-H, Cepek M (2000) Coccolithophores in the equatorial Atlantic Ocean: response to seasonal and Late Quaternary surface water variability. Mar Micropaleontol 39: 87–112

    Article  Google Scholar 

  • Kirst GJ (1998) Rekonstruktion von Oberflächenwassertemperaturen im östlichen Südatlantik anhand von Alkenonen. Ber FB Geowissensch Univ Bremen 118, 130pp

    Google Scholar 

  • Kirst GJ, Schneider RR, Müller PJ, von Storch I, Wefer G (1999) Late Quaternary temperature variability in the Benguela Current system derived from alkenones. Quat Res 52: 92–103

    Article  Google Scholar 

  • McCave IN, Manighetti B, Robinson SG (1995) Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Palaeo-ceanography 10: 593–610

    Article  Google Scholar 

  • McIntyre A, Bé AWH (1967) Modern coccolithophoraceae of the Atlantic Ocean – I. Placoliths and Cyrtoliths. Deep-Sea Res 114: 561–597

    Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a non steady state. Global Biogeochem Cy 7: 927–957

    Article  Google Scholar 

  • Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not a bliss. Geol Rundsch 85: 496–504

    Article  Google Scholar 

  • Milliman JD, Troy PJ, Balch WM, Adams, AK, Li Y-H, Mackenzie FT (1999) Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Res I 46: 1653–1669

    Article  Google Scholar 

  • Monger B, McClain C, Murtugudde R (1997) Seasonal phytoplankton dynamics in the eastern tropical Atlantic. J Geophys Res 102: 12,389–12,411

    Article  Google Scholar 

  • Paasche E, Brubak S (1994) Enhanced calcification in the coccolithophore Emiliania huxleyi (Haptophyceae) under phosphorous limitation. Phycologica 33: 324–330

    Article  Google Scholar 

  • Pauli CK, Hills SJ, Thierstein HR (1988) Progressive dissolution of fine carbonate particles in pelagic sediments. Mar Geol 81: 27–40

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Progr Oceanogr 26: 1–73

    Article  Google Scholar 

  • Reimers C, Jahnke R, McCorkle D (1992) Carbon fluxes and burial rates over the continental slope and rise off central California with implications for the global carbon cycle. Global Biogeochem Cy 6: 199–224

    Article  Google Scholar 

  • Robinson SG, McCave IN (1994) Orbital forcing of bottom-current enhanced sedimentation on Feni Drift, NE Atlantic, during the mid-Pleistocene. Palaeogeography 9: 943–972

    Google Scholar 

  • Ruddiman WF (1997) Tropical terrigenous fluxes since 25,000 yrs B.P. Mar Geol 136: 189–207

    Article  Google Scholar 

  • Rühlemann C, Müller PJ, Schneider R (1999) Organic carbon and carbonate as paleo-productivity proxies: Examples from high and low productivity areas of the tropical Atlantic. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: Examples from the South Atlantic. Springer-Verlag, Berlin, Heidelberg, pp 315–344

    Chapter  Google Scholar 

  • Samtleben C, Schröder A (1992) Living coccolithophore communities in the Norwegian-Greenland Sea and their records in sediments. Mar Micropaleontol 19: 333–354

    Article  Google Scholar 

  • Sarmiento JL, Toggweiler JR, Najjar R (1988) Ocean carbon-cycle dynamics and atmospheric pCO2. Philos T Roy Soc London 325: 3–21

    Article  Google Scholar 

  • Sarnthein M, Winn K, Jung SJA, Duplessy JC, Labeyrie LD, Erlenkeuser H, Ganssen G (1994) Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9: 209–281

    Article  Google Scholar 

  • Schiebel R (2002) Planktic foraminiferal sedimentation and the marine calcite budget. Global Biochem Cy 16 (4): 21

    Google Scholar 

  • Schneider RR, Price B, Müller PJ, Kroon D, Alexander I (1997) Monsoon related variations in Zaire (Congo) sediment load and influence of fluvial silicate supply on marine productivity in the east equatorial Atlantic during the last 200,000 years. Paleoceanography 12: 463–481

    Article  Google Scholar 

  • Schneidermann N (1977) Selective dissolution of recent coccoliths in the Atlantic Ocean. In: Ramsay ATS (ed) Ocean Micropaleontology, pp 1009–1053

    Google Scholar 

  • Smythe-Wright D, Chapman P, Duncombe Rae, C, Shannon LV, Boswell SM (1998) Characteristics of the South Atlantic subtropical frontal zone between 15°W and 5°E. Deep-Sea Res 145: 167–192

    Google Scholar 

  • Sprengel C, Baumann K-H, Neuer S (2000) Seasonal and interannual variation of coccolithophore fluxes and species composition in sediment traps north of Gran Canaria (29°N 15°W). Mar Micropaleontol 39: 157–178

    Article  Google Scholar 

  • Stuut J-BW, Prins MA, Schneider RR, Weltje GJ, Jansen JHF, Postma G (2002) A 300 kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Mar Geol 180: 221–233

    Article  Google Scholar 

  • Summerhayes CP, Kroon D, Rosell-Mele A, Jordan RW, Schrader H-J, Hearn R, Villaneuva J, Grimait JO, Eglington G (1995) Variability in the Benguela Current up-welling system over the past 70,000 years. Progr Oceanography 35: 207–251

    Article  Google Scholar 

  • Tiedemann R, Sarnthein M, Stein R (1989) Climatic changes in the western Sahara: aeolomarine sediment record of the last 8 million years (sites 657–661). Proc ODP Sci Res 108: 241–277

    Google Scholar 

  • Vogelsang E, Sarnthein M, Pflaumann U (2001) d180 stratigraphy, chronology, and sea surface temperatures of Atlantic sediment records (GLAMAP-2000 Kiel). Repts Inst Geowissensch Kiel 13, 11pp

    Google Scholar 

  • Volbers ANA, Henrich R (2002) Present water mass calcium carbonate corrosiveness in the eastern South Atlantic inferred from ultrastructural breakdown of Globigerina bulloides in surface sediments. Mar Geol 186: 203–220

    Article  Google Scholar 

  • Walsh J (1991) Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350: 53–55

    Article  Google Scholar 

  • Westbroek P, Brown CW, Van Bleijswijk J, Brownlee C, Brummer GJ, Conte M, Egge J, Fernandez E, Jordan R, Knappertsbusch M, Stefels J, Veldhuis M, Van der Wal P, Young J (1993) A model system approach to biological climate forcing: the example of Emiliania huxleyi. Glob Planet Change 8: 27–46

    Article  Google Scholar 

  • Westbroek P, Buddemeier B, Coleman M, Kok DJ, Fautin D, Stal L (1994) Strategies for the study of climate forcing by calcification. In: Doumenge F (ed) Past and Present Biomineralization Processes. Considerations about the Carbonate Cycle. Bull Instit Océanographique Monaco 13: 37–60

    Google Scholar 

  • Winter A, Siesser WG (1994) Coccolithophores. Cambridge University Press, Cambridge, 242 pp

    Google Scholar 

  • Young JR, Ziveri P (2000) Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Res II 47: 1679–1700

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumann, KH., Böckel, B., Frenz, M. (2004). Coccolith contribution to South Atlantic carbonate sedimentation. In: Thierstein, H.R., Young, J.R. (eds) Coccolithophores. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06278-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06278-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06016-8

  • Online ISBN: 978-3-662-06278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics