Skip to main content

Ex Vivo Gene Therapy in the Central Nervous System

  • Chapter
CNS Neuroprotection

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 155))

Abstract

The targeted delivery of genes into the adult central nervous system (CNS) has received considerable interest in recent years with the development of improved viral vector systems and suitable strategies for therapeutic intervention. Experimental gene therapy in animal models has been studied to prevent or slow the progression of chronic neurodegenerative diseases, to improve recovery after traumatic CNS injury and to kill malignant brain tumors. Genes that have been investigated in these various models include those that code for neurotrophic factors, neurotransmitter synthesis enzymes, modulators of neuronal and glial function, and inducers of cell death. Generally, two different types of gene therapy have been distinguished: in vivo and ex vivo gene therapy. The direct injection of genes into the CNS using viral vectors or DNA-liposome suspensions is termed in vivo gene therapy. Ex vivo gene therapy is based on genetic modification of cells in vitro followed by the grafting of these cells into the CNS. Ex vivo approaches to gene therapy will be the focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebischer P, Goddard M, Signore AP, Timpson RL (1994) Functional recovery in hemiparkinsonian primates transplanted with polymer-encapsulated PC12 cells. Exp Neurol 126:151–158

    PubMed  CAS  Google Scholar 

  • Aebischer P, Pochon NA, Heyd B, Deglon N, Joseph JM, Zurn AD, Baetge EE, Hammang JP, Goddard M, Lysaght M, Kaplan F, Kato AC, Schluep M, Hirt L, Regli F, Porchet F, De Tribolet N (1996b) Gene therapy for amyotrophic lateral sclerosis (ALS) using a polymer encapsulated xenogenic cell line engineered to secrete hCNTF. Hum Gene Ther 7:851–860

    PubMed  CAS  Google Scholar 

  • Aebischer P, Schluep M, Déglon N, Joseph JM, Hirt L, Heyd B, Goddard M, Hammang JP, Zurn AD, Kato AC, Regli F, Baetge EE (1996a) Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nature Med 2:696–699

    PubMed  CAS  Google Scholar 

  • Aebischer P, Tresco PA, Winn SR, Greene LA, Jaeger CB (1991) Long-term cross-species brain transplantation of a polymer-encapsulated dopamine-secreting cell line. Exp Neurol 111:269–275

    PubMed  CAS  Google Scholar 

  • Alexi T, Venero JL, Hefti F (1997) Protective effects of neurotrophin-4/5 and transforming growth factor-alpha on striatal neuronal phenotypic degeneration after excitotoxic lesioning with quinolinic acid. Neurosci 78:73–86

    CAS  Google Scholar 

  • Anderson KD, Panayotatos N, Corcoran TL, Lindsay RM, Wiegand SJ (1996) Ciliary neurotrophic factor protects striatal output neurons in an animal model of Huntington disease. Proc Natl Acad Sci USA 93:7346–7351

    PubMed  CAS  Google Scholar 

  • Araujo DM, Hilt DC (1997) Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington’s disease. Neurosci 81:1099–1110

    CAS  Google Scholar 

  • Bankiewicz KS, Leff SE, Nagy D, Jungles S, Rokovich J, Spratt K, Cohen L, Libonati M, Snyder RO, Mandel RJ (1997) Practical aspects of the development of ex vivo and in vivo gene therapy for Parkinson’s disease. Exp Neurol 144:147–156

    PubMed  CAS  Google Scholar 

  • Barba D, Hardin J, Ray J, Gage FH (1993) Thymidine kinase-mediated killing of rat brain tumors. J Neurosurg 79:729–735

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RLD, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    PubMed  CAS  Google Scholar 

  • Beal MF (1994) Neurochemistry and toxin models in Huntington’s disease. Current Opinion Neurol 7:542–547

    CAS  Google Scholar 

  • Beal MF, Ferrante RJ, Swartz KJ, Kowall NW (1991) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci 11:1649–1659

    PubMed  CAS  Google Scholar 

  • Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171

    PubMed  CAS  Google Scholar 

  • Beck KD, Valverde J, Alexi T, Poulsen K, Moffat B, Vandlen RA, Rosenthal A, Hefti F (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373:339–341

    PubMed  CAS  Google Scholar 

  • Bilang-Bleuel A, Revah F, Colin P, Locquet I, Robert JJ, Mallet J, Horellou P (1997) Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc Natl Acad Sci USA 94: 8818–8823

    PubMed  CAS  Google Scholar 

  • Blesch A, Diergardt N, Tuszynski MH (1998) Cellularly delivered GDNF induces robust growth of motor and sensory axons in the injured adult spinal cord. Soc for Neuroscience Abstracts 24:555

    Google Scholar 

  • Blesch A, Grill RJ, Tuszynski MH (1998) Neurotrophin gene therapy in CNS models of trauma and degeneration. Progr Brain Res 117:473–484

    CAS  Google Scholar 

  • Blesch A, Tuszynski MH (1995) Ex vivo gene therapy for Alzheimer’s disease and spinal cord injury. Clinical Neurosci 3:268–274

    Google Scholar 

  • Blesch A, Uy HS, Grill RJ, Cheng JG, Patterson PH, Tuszynski MH (1999) LIF augments corticospinal axon growth and neurotrophin expression after adult CNS injury. J Neurosci 19:3556–3566

    PubMed  CAS  Google Scholar 

  • Borasio GD, Robberecht W, Leigh PN, Emile J, Guiloff RJ, Jerusalem F, Silani V, Vos PE, Wokke JH, Dobbins T (1998) A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I Study Group. Neurol 51:583–586

    CAS  Google Scholar 

  • Bregman BS, Kunkel-Bagden E, Reier PJ, Dai HN, McAtee M, Gao D (1993) Recovery of function after spinal cord injury: mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats. Exp Neurol 123:3–16

    PubMed  CAS  Google Scholar 

  • Bregman BS, Kunkel-Bagden E, Schnell L, Dai HN, Gao D, Schwab ME (1995) Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378:498–501

    PubMed  CAS  Google Scholar 

  • Chen KS, Gage FH (1995) Somatic gene transfer of NGF to the aged brain: behavioral and morphological amelioration. J Neurosci 15:2819–2825

    PubMed  CAS  Google Scholar 

  • Cheng H, Cao Y, Olson L (1996) Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273:510–513

    PubMed  CAS  Google Scholar 

  • Choi-Lundberg DL, Lin Q, Chang YN, Chiang YL, Hay CM, Mohajeri H, Davidson BL, Bohn MC (1997) Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275:838–841

    PubMed  CAS  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    PubMed  CAS  Google Scholar 

  • Coyle JT, Schwarcz R (1976) Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 263:244–246

    PubMed  CAS  Google Scholar 

  • Crutcher KA, Collins F (1982) In vitro Evidence for two distinct hippocampal growth factors: basis of neuronal plasticity? Science, 67–68

    Google Scholar 

  • Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256:1550–1552

    PubMed  CAS  Google Scholar 

  • David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931–933

    PubMed  CAS  Google Scholar 

  • Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390:680–683

    PubMed  CAS  Google Scholar 

  • Davies SW, Beardsall K (1992) Nerve growth factor selectively prevents excitotoxin induced degeneration of striatal cholinergic neurones. Neurosci Letters 140: 161–164

    CAS  Google Scholar 

  • Déglon N, Heyd B, Tan SA, Joseph JM, Zurn AD, Aebischer P (1996) Central nervous system delivery of recombinant ciliary neurotrophic factor by polymer encapsulated differentiated C2C12 myoblasts. Hum Gene Ther 7:2135–2146

    PubMed  Google Scholar 

  • Dunnett SB, Svendsen CN (1993) Huntington’s disease: animal models and transplantation repair. Current Opinion Neurobiol 3:790–796

    CAS  Google Scholar 

  • Dunnett SB, Toniolo G, Fine A, Ryan CN, Björklund A, Iversen SD (1985) Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis-II. Sensorimotor and learning impairments. Neurosci 16:787–797

    CAS  Google Scholar 

  • During MJ, Leone P (1997) Targets for gene therapy of Parkinson’s disease: growth factors, signal transduction, and promoters. Exp Neurol 144:74–81

    PubMed  CAS  Google Scholar 

  • Emerich DF, Hammang JP, Baetge EE, Winn SR (1994) Implantation of polymer-encapsulated human nerve growth factor-secreting fibroblasts attenuates the behavioral and neuropathological consequences of quinolinic acid injections into rodent striatum. Exp Neurol 130:141–150

    PubMed  CAS  Google Scholar 

  • Emerich DF, Lindner MD, Winn SR, Chen EY, Frydel BR, Kordower JH (1996) Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington’s disease. J Neurosci 16:5168–5181

    PubMed  CAS  Google Scholar 

  • Emerich DF, Pione M, Francis J, Frydel BR, Winn SR, Lindner MD (1996) Alleviation of behavioral deficits in aged rodents following implantation of encapsulated GDNF-producing fibroblasts. Brain Res 736:99–110

    PubMed  CAS  Google Scholar 

  • Emerich DF, Winn SR, Hantraye PM, Peschanski M, Chen EY, Chu Y, McDermott P, Baetge EE, Kordower JH (1997) Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature 386:395–399

    PubMed  CAS  Google Scholar 

  • Emerich DF, Winn SR, Harper J, Hammang JP, Baetge EE, Kordower JH (1994) Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate: rescue and sprouting of degenerating cholinergic basal forebrain neurons. J Comp Neurol 349:148–164

    PubMed  CAS  Google Scholar 

  • Ezzeddine ZD, Martuza RL, Platika D, Short MP, Malick A, Choi B, Breakefield XO (1991) Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biologist 3:608–614

    PubMed  CAS  Google Scholar 

  • Fine A, Dunnett SB, Björklund A, Iversen SD (1985) Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease. Proc Natl Acad Sci USA 82:5227–5230

    PubMed  CAS  Google Scholar 

  • Fischer W, Björklund A, Chen K, Gage FH (1991) NGF improves spatial memory in aged rodents as a function of age. J Neurosci 11:1889–1906

    PubMed  CAS  Google Scholar 

  • Fischer W, Wictorin K, Bjorklund A, Williams LR, Varon S, Gage FH (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329:65–68

    PubMed  CAS  Google Scholar 

  • Fisher LJ (1997) Neural precursor cells: applications for the study and repair of the central nervous system. Neurobiol Dis 4:1–22

    PubMed  CAS  Google Scholar 

  • Fisher LJ, Jinnah HA, Kale LC, Higgins GA, Gage FH (1991) Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa. Neuron 6:371–380

    PubMed  CAS  Google Scholar 

  • Fisher LJ, Raymon HK, Gage FH (1993) Cells engineered to produce acetylcholine: therapeutic potential for Alzheimer’s disease. Ann N Y Acad Sci 695:278–284

    PubMed  CAS  Google Scholar 

  • Fisher LJ, Schinstine M, Salvaterra P, Dekker AJ, Thal L, Gage FH (1993) In vivo production and release of acetylcholine from primary fibroblasts genetically modified to express choline acetyltransferase. J Neurochem 61:1323–1332

    PubMed  CAS  Google Scholar 

  • Frim DM, Short MP, Rosenberg WS, Simpson J, Breakefield XO, Isacson O (1993a) Local protective effects of nerve growth factor-secreting fibroblasts against excitotoxic lesions in the rat striatum. J Neurosurg 78:267–273

    PubMed  CAS  Google Scholar 

  • Frim DM, Simpson J, Uhler TA, Short MP, Bossi SR, Breakefield XO, Isacson O (1993b) Striatal degeneration induced by mitochondrial blockade is prevented by biologically delivered NGF. J Neurosci Res 35:452–458

    PubMed  CAS  Google Scholar 

  • Frim DM, Uhler TA, Galpern WR, Beal MF, Breakefield XO, Isacson O (1994) Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci USA 91:5104–5108

    PubMed  CAS  Google Scholar 

  • Frim DM, Uhler TA, Short MP, Ezzedine ZD, Klagsbrun M, Breakefield XO, Isacson O (1993) Effects of biologically delivered NGF, BDNF and bFGF on striatal excitotoxic lesions. Neuroreport 4:367–370

    PubMed  CAS  Google Scholar 

  • Gage FH, Armstrong DM, Williams LR, Varon S (1988) Morphological response of axotomized septal neurons to nerve growth factor. J Comp Neurol 269:147–155

    PubMed  CAS  Google Scholar 

  • Gage FH, Wolff JA, Rosenberg MB, Xu L, Yee JK, Shults C, Friedmann T (1987) Grafting genetically modified cells to the brain: possibilities for the future. Neurosci 23:795–807

    CAS  Google Scholar 

  • Galpern WR, Frim DM, Tatter SB, Altar CA, Beal MF, Isacson O (1996) Cell-mediated delivery of brain-derived neurotrophic factor enhances dopamine levels in an MPP+ rat model of substantia nigra degeneration. Cell Transplantat 5:225–232

    CAS  Google Scholar 

  • Galpern WR, Matthews RT, Beal MF, Isacson O (1996) NGF attenuates 3-nitrotyrosine formation in a 3-NP model of Huntington’s disease. Neuroreport 7:2639–2642

    PubMed  CAS  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255

    PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    PubMed  CAS  Google Scholar 

  • Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    PubMed  CAS  Google Scholar 

  • Grill R, Murai K, Blesch A, Gage FH, Tuszynski MH (1997a) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 17:5560–5572

    PubMed  CAS  Google Scholar 

  • Grill RJ, Blesch A, Tuszynski MH (1997b) Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells. Exp Neurol 148:444–452

    PubMed  CAS  Google Scholar 

  • ALS CNTF Treatment Study Group (1996) A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology 46:1244–1249

    Google Scholar 

  • The ALS CNTF Treatment Study (ACTS) Phase III Study Group (1995) A phase I study of recombinant human ciliary neurotrophic factor (rHCNTF) in patients with amyotrophic lateral sclerosis. Clin Neuropharmacol 18:515–532

    Google Scholar 

  • Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 6:2155–2162

    PubMed  CAS  Google Scholar 

  • Hodges H, Allen Y, Sinden J, Lantos PL, Gray JA (1991) Effects of cholinergic-rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system-II. Cholinergic drugs as probes to investigate lesion-induced deficits and transplant-induced functional recovery. Neurosci 45:609–623

    CAS  Google Scholar 

  • Horellou P, Brundin P, Kalen P, Mallet J, Bjorklund A (1990) In vivo release of dopa and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neuron 5:393–402

    PubMed  CAS  Google Scholar 

  • Horger BA, Nishimura MC, Armanini MP, Wang LC, Poulsen KT, Rosenblad C, Kirik D, Moffat B, Simmons L, Johnson E Jr, Milbrandt J, Rosenthal A, Bjorklund A, Vandlen RA, Hynes MA, Phillips HS (1998) Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 18:4929–4937

    PubMed  CAS  Google Scholar 

  • Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232

    PubMed  CAS  Google Scholar 

  • Hyman C, Juhasz M, Jackson C, Wright P, Ip NY, Lindsay RM (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci 14:335–347

    PubMed  CAS  Google Scholar 

  • Ikeda K, Wong V, Holmlund TH, Greene T, Cedarbaum JM, Lindsay RM, Mitsumoto H (1995) Histometric effects of ciliary neurotrophic factor in wobbler mouse motor neuron disease. Ann Neurol 37:47–54

    PubMed  CAS  Google Scholar 

  • Kawaja MD, Rosenberg MB, Yoshida K, Gage FH (1992) Somatic gene transfer of nerve growth factor promotes the survival of axotomized septal neurons and the regeneration of their axons in adult rats. J Neurosci 12:2849–2864

    PubMed  CAS  Google Scholar 

  • Knüsel B, Beck KD, Winslow JW, Rosenthal A, Burton LE, Widmer HR, Nikolics K, Hefti F (1992) Brain-derived neurotrophic factor administration protects basal forebrain cholinergic but not nigral dopaminergic neurons from degenerative changes after axotomy in the adult rat brain. J Neurosci 12:4391–4402

    PubMed  Google Scholar 

  • Koliatsos VE, Nauta HJ, Clatterbuck RE, Holtzman DM, Mobley WC, Price DL (1990) Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey. J Neurosci 10:3801–3813

    PubMed  CAS  Google Scholar 

  • Kordower JH, Chen EY, Mufson EJ, Winn SR, Emerich, DF (1996) Intrastriatal implants of polymer encapsulated cells genetically modified to secrete human nerve growth factor: trophic effects upon cholinergic and noncholinergic striatal neurons. Neurosci 72:63–77

    CAS  Google Scholar 

  • Kordower JH, Chen EY, Winkler C, Fricker R, Charles V, Messing A, Mufson EJ, Wong SC, Rosenstein JM, Björklund A, Emerich DF, Hammang J, Carpenter MK (1997) Grafts of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice: trophic and tropic effects in a rodent model of Huntington’s disease. J Comp Neurol 387:96–113

    PubMed  CAS  Google Scholar 

  • Kordower JH, Winn SR, Liu YT, Mufson EJ, Sladek JR Jr, Hammang JP, Baetge EE, Emerich DF (1994) The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc Natl Acad Sci USA 91:10898–10902

    PubMed  CAS  Google Scholar 

  • Korsching S, Auburger G, Heumann R, Scott J, Thoenen H (1985) Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. Embo J 1389–1393

    Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    PubMed  CAS  Google Scholar 

  • Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K (1995) TGF-beta super-family members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. Embo J 14:736–742

    PubMed  CAS  Google Scholar 

  • Kromer LF (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235:214–216

    PubMed  CAS  Google Scholar 

  • Lange DJ, Felice KJ, Festoff BW, Gawel MJ, Gelinas DF, Kratz R, Lai EC, Murphy MF, Natter HM, Norris FH, Rudnicki S (1996) Recombinant human insulin-like growth factor-I in ALS: description of a double-blind, placebo-controlled study. North American ALS/IGF-I Study Group. Neurology 47:S93–S95

    Google Scholar 

  • Lapchak PA, Beck KD, Araujo DM, Irwin I, Langston JW, Hefti F (1993) Chronic intranigral administration of brain-derived neurotrophic factor produces striatal dopaminergic hypofunction in unlesioned adult rats and fails to attenuate the decline of striatal dopaminergic function following medial forebrain bundle transection. Neurosci 53:639–650

    CAS  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162

    PubMed  CAS  Google Scholar 

  • Levivier M, Przedborski S, Bencsics C, Kang UJ (1995) Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 15:7810–7820

    PubMed  CAS  Google Scholar 

  • Li Y, Field M, Raisman G (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277:2000–2002

    PubMed  CAS  Google Scholar 

  • Li Y, Raisman G (1994) Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. J Neurosci 4050–4063

    Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    PubMed  CAS  Google Scholar 

  • Lin Q, Cunningham LA, Epstein LG, Pechan PA, Short MP, Fleet C, Bohn MC (1997) Human fetal astrocytes as an ex vivo gene therapy vehicle for delivering biologically active nerve growth factor. Hum Gene Ther 8:331–339

    PubMed  CAS  Google Scholar 

  • Lundberg C, Horellou P, Mallet J, Björklund A (1996) Generation of DOPA-producing astrocytes by retroviral transduction of the human tyrosine hydroxylase gene: in vitro characterization and in vivo effects in the rat Parkinson model. Exp Neurol 139:39–53

    PubMed  CAS  Google Scholar 

  • Martinez-Serrano A, Björklund A (1996) Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, genetically modified neural stem cells. J Neurosci 16:4604–4616

    PubMed  CAS  Google Scholar 

  • Martinez-Serrano A, Fischer W, Bjorklund A (1995) Reversal of age-dependent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain. Neuron 473–484

    Google Scholar 

  • Martinez-Serrano A, Fischer W, Bjorklund A (1995) Reversal of age-dependent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain. Neuron 473–484

    Google Scholar 

  • Martinez-Serrano A, Lundberg C, Horellou P, Fischer W, Bentlage C, Campbell K, McKay RD, Mallet J, Bjorklund A (1995) CNS-derived neural progenitor cells for gene transfer of nerve growth factor to the adult rat brain: complete rescue of axotomized cholinergic neurons after transplantation into the septum. J Neurosci 5668–5680

    Google Scholar 

  • Martinez-Serrano A, Snyder EY (1999) Neural stem cell lines for CNS repair. In: Tuszynski MH, Kordower JH (eds) CNS Regeneration, (San Diego: Academic Press), pp 203–250

    Google Scholar 

  • Masliah E, Terry RD, Alford M, DeTeresa R, Hansen LA (1991) Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer’s disease. Am J Pathol 138:235–246

    PubMed  CAS  Google Scholar 

  • McGeer EG, McGeer PL (1976) Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids. Nature 263:517–519

    PubMed  CAS  Google Scholar 

  • McTigue DM, Horner PJ, Stokes BT, Gage FH (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18: 5354–5365

    PubMed  CAS  Google Scholar 

  • Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB (1998) Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci 10:607–621

    PubMed  CAS  Google Scholar 

  • Milbrandt J, de SFJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, Lampe PA, Heuckeroth RO, Kotzbauer PT, Simburger KS, Golden JP, Davies JA, Vejsada R, Kato AC, Hynes M, Sherman D, Nishimura M, Wang LC, Vandlen R, Moffat B, Klein RD, Poulsen K, Gray C, Garces A, Johnson EM Jr et al. (1998) Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20:245–253

    PubMed  CAS  Google Scholar 

  • Miller AD (1990) Retrovirus packaging cells. Hum Gene Ther 1:5–14

    PubMed  CAS  Google Scholar 

  • Miller AD, Miller DG, Garcia JV, Lynch CM (1993) Use of retroviral vectors for gene transfer and expression. Methods Enzymol 217:581–599

    PubMed  CAS  Google Scholar 

  • Miller AD, Palmer TD, Hock RA (1986) Transfer of genes into human somatic cells using retrovirus vectors. Cold Spring Harb Symp Quant Biol 51 Pt 2:1013–1019

    Google Scholar 

  • Miller RG, Petajan JH, Bryan WW, Armon C, Barohn RJ, Goodpasture JC, Hoagland RJ, Parry GJ, Ross MA, Stromatt SC (1996) A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. rhCNTF ALS Study Group. Ann Neurol 39:256–260

    PubMed  CAS  Google Scholar 

  • Mitsumoto H, Ikeda K, Holmlund T, Greene T, Cedarbaum JM, Wong V, Lindsay RM (1994) The effects of ciliary neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann Neurol 36:142–148

    PubMed  CAS  Google Scholar 

  • Mitsumoto H, Ikeda K, Klinkosz B, Cedarbaum JM, Wong V, Lindsay RM (1994) Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265:1107–1110

    PubMed  CAS  Google Scholar 

  • Mori F, Hirnes BT, Kowada M, Murray M, Tessler A (1997) Fetal spinal cord transplants rescue some axotomized rubrospinal neurons from retrograde cell death in adult rats. Exp Neurol 143:45–60

    PubMed  CAS  Google Scholar 

  • Olson L, Nordberg A, von HH, Backman L, Ebendal T, Alafuzoff I, Amberia K, Hartvig P, Herlitz A, Lilja A et al. (1992) Nerve growth factor affects 11C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (case report). J Neural Transm Park Dis Dement Sect 4:79–95

    PubMed  CAS  Google Scholar 

  • Pardridge WM (1994) New approaches to drug delivery through the blood-brain barrier. Trends Biotechnol 12:239–245

    PubMed  CAS  Google Scholar 

  • Pérez-Navarro E, Arenas E, Reiriz J, Calvo N, Alberch J (1996) Glial cell line-derived neurotrophic factor protects striatal calbindin-immunoreactive neurons from excitotoxic damage. Neurosci 75:345–352

    Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2:1457–1459

    PubMed  CAS  Google Scholar 

  • Pizzo DL, Paban V, Winkler J, Gage FH, Thal LJ (1998) Characterization of a tetracycline regulatable ChAT fibroblast line. Soc Neurosci Abstracts 24:1055

    Google Scholar 

  • Price DL (1986) New perspectives on Alzheimer’s disease. Annu Rev Neurosci 9:489–512

    PubMed  CAS  Google Scholar 

  • Ramon-Cueto A, Nieto-Sampedro M (1994) Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol 127:232–244

    PubMed  CAS  Google Scholar 

  • Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages resulkts in partial recovery of paraplegic rats. Nature Med 4:814–821

    PubMed  CAS  Google Scholar 

  • Richardson PM, McGuinness UM, Aguayo AJ (1980) Axons from CNS neurons regenerate into PNS grafts. Nature 284:264–265

    PubMed  CAS  Google Scholar 

  • Rosenberg MB, Friedmann T, Robertson RC, Tuszynski M, Wolff JA, Breakefield XO, Gage FH (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242:1575–1578

    PubMed  CAS  Google Scholar 

  • Saffran BN, Woo JE, Mobley WC, Crutcher KA (1989) Intraventricular NGF infusion in the mature rat brain enhances sympathetic innervation of cerebrovascular targets but fails to elicit sympathetic ingrowth. Brain Res 492:245–254

    PubMed  CAS  Google Scholar 

  • Sagot Y, Tan SA, Baetge E, Schmalbruch H, Kato AC, Aebischer P (1995) Polymer encapsulated cell lines genetically engineered to release ciliary neurotrophic factor can slow down progressive motor neuronopathy in the mouse. Eur J Neurosci 7:1313–1322

    PubMed  CAS  Google Scholar 

  • Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173

    PubMed  CAS  Google Scholar 

  • Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343:269–272

    PubMed  CAS  Google Scholar 

  • Schnell L, Schwab ME (1993) Sprouting and regeneration of lesioned corticospinal tract fibres in the adult rat spinal cord. Eur J Neurosci 5:1156–1171

    PubMed  CAS  Google Scholar 

  • Schwab ME, Otten U, Agid Y, Thoenen H (1979) Nerve growth factor (NGF) in the rat CNS: absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res 168:473–483

    PubMed  CAS  Google Scholar 

  • Seiler M, Schwab ME (1984) Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res 300:33–39

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1996) Cell biology of the beta-amyloid precursor protein and the genetics of Alzheimer’s disease. Cold Spring Harb Symp Quant Biol 61:587–596

    PubMed  CAS  Google Scholar 

  • Sendtner M, Schmalbruch H, Stöckli KA, Carroll P, Kreutzberg GW, Thoenen H (1992) Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 358:502–504

    PubMed  CAS  Google Scholar 

  • Sharp AH, Ross CA (1996) Neurobiology of Huntington’s disease. Neurobiol Dis 3:3–15

    PubMed  CAS  Google Scholar 

  • Shelton DL, Reichardt LF (1986) Studies on the expression of the beta nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proc Natl Acad Sci USA 83:2714–2718

    PubMed  CAS  Google Scholar 

  • Smith DE, McCay HL, Gage FH, Roberts JA, Tuszynski MH (1998) Intraparenchymal delivery of NGF by ex vivo gene transfer reverses age-related loss of expression of p75-NTR in basal forebrain cholinergic neurons. Soc Neurosci Abstr 24(1):541

    Google Scholar 

  • Snyder EY (1994) Grafting immortalized neurons to the CNS. Current Opin Neurobiol 4:742–751

    CAS  Google Scholar 

  • Sobreviela T, Clary DO, Reichardt LF, Brandabur MM, Kordower JH, Mufson EJ (1994) TrkA-immunoreactive profiles in the central nervous system: colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. J Comp Neurol 350:587–611

    PubMed  CAS  Google Scholar 

  • Stokes BT, Reier PJ (1992) Fetal grafts alter chronic behavioral outcome after contusion damage to the adult rat spinal cord. Exp Neurol 116:1–12

    PubMed  CAS  Google Scholar 

  • Takamiya Y, Short MP, Moolten FL, Fleet C, Mineta T, Breakefield XO, Martuza RL (1993) An experimental model of retrovirus gene therapy for malignant brain tumors. J Neurosurg 79:104–110

    PubMed  CAS  Google Scholar 

  • Terry RD, Katzman R (1983) Senile dementia of the Alzheimer type. Ann Neurol 14:497–506

    PubMed  CAS  Google Scholar 

  • Tessler A (1991) Intraspinal transplants. Ann Neurol 29:115–123

    PubMed  CAS  Google Scholar 

  • Tessler A, Fischer I, Giszter S, Hirnes BT, Miya D, Mori F, Murray M (1997) Embryonic spinal cord transplants enhance locomotor performance in spinalized newborn rats. Adv Neurol 72:291–303

    PubMed  CAS  Google Scholar 

  • Thal L (1994) Clinical trials in Alzheimer disease. In: Terry R, Katzman R, Bick K (eds) Alzheimer disease, (New York: Raven Press), pp 431–444

    Google Scholar 

  • The-Huntington’s-Disease-Collaborative-Research-Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983

    Google Scholar 

  • Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, Olson L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339

    PubMed  CAS  Google Scholar 

  • Tseng JL, Baetge EE, Zurn AD, Aebischer P (1997) GDNF reduces drug-induced rotational behavior after medial forebrain bundle transection by a mechanism not involving striatal dopamine. J Neurosci 17:325–333

    PubMed  CAS  Google Scholar 

  • Tuszynski MH, Gabriel K, Gage FH, Suhr S, Meyer S, Rosetti A (1996b) Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neuntes after adult spinal cord injury. Exp Neurol 137:157–173

    PubMed  CAS  Google Scholar 

  • Tuszynski MH, Murai K, Blesch A, Grill R, Miller I (1997a) Functional characterization of NGF-secreting cell grafts to the acutely injured spinal cord. Cell Transplant 6:361–368

    PubMed  CAS  Google Scholar 

  • Tuszynski MH, Peterson DA, Ray J, Baird A, Nakahara Y, Gage FH (1994a) Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord. Exp Neurol 126:1–14

    PubMed  CAS  Google Scholar 

  • Tuszynski MH, Roberts J, Senut MC, U HS, Gage FH (1996a) Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther 3:305–314

    PubMed  CAS  Google Scholar 

  • Tuszynski MH, Sang H, Yoshida K, Gage FH (1991) Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann Neurol 30:625–636

    PubMed  CAS  Google Scholar 

  • Tuszynski MH, Senut MC, Ray J, Roberts J (1994b) Somatic gene transfer to the adult primate central nervous system: In vitro and in vivo characterization of cells genetically modified to secrete nerve growth factor. Neurobiol Dis 1:67–78

    PubMed  CAS  Google Scholar 

  • Tuszynski MH, U HS, Amarai DG, Gage FH (1990) Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J Neurosci 10:3604–3614

    PubMed  CAS  Google Scholar 

  • Tuszynski MH, Weidner N, McCormack M, Miller I, Powell H, Conner J (1998) Grafts of genetically modified Schwann cells to the spinal cord: survival, axon growth, and myelination. Cell Transplant 7:187–196

    PubMed  CAS  Google Scholar 

  • Venero JL, Beck KD, Hefti F (1994) Intrastriatal infusion of nerve growth factor after quinolinic acid prevents reduction of cellular expression of choline acetyltransferase messenger RNA and trkA messenger RNA, but not glutamate decarboxylase messenger RNA. Neurosci 61:257–268

    CAS  Google Scholar 

  • Volpe BT, Wildmann J, Altar CA (1998) Brain-derived neurotrophic factor prevents the loss of nigral neurons induced by excitotoxic striatal-pallidal lesions. Neurosci 83:741–748

    CAS  Google Scholar 

  • Widner H, Brundin P (1988) Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis. Brain Res 472:287–324

    PubMed  CAS  Google Scholar 

  • Williams LR (1991) Hypophagia is induced by intracerebroventricular administration of nerve growth factor. Exp Neurol 113:31–37

    PubMed  CAS  Google Scholar 

  • Winkler J, Ramirez GA, Kuhn HG, Peterson DA, Day-Lollini PA, Stewart GR, Tuszynski MH, Gage FH, Thal LJ (1997) Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann Neurol 41:82–93

    PubMed  CAS  Google Scholar 

  • Winkler J, Suhr ST, Gage FH, Thal LJ, Fisher LJ (1995) Essential role of neocortical acetylcholine in spatial memory. Nature 375:484–487

    PubMed  CAS  Google Scholar 

  • Wolff JA, Fisher LJ, Xu L, Jinnah HA, Langlais PJ, Iuvone PM, O’Malley KL, Rosenberg MB, Shimohama S, Friedmann T et al. (1989) Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Proc Natl Acad Sci USA 86:9011–9014

    PubMed  CAS  Google Scholar 

  • Xu XM, Chen A, Guenard V, Kleitman N, Bunge MB (1997) Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J Neurocytol 26:1–16

    PubMed  CAS  Google Scholar 

  • Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol 134:261–272

    PubMed  CAS  Google Scholar 

  • Xu XM, Guenard V, Kleitman N, Bunge MB (1994) Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol 351:145–160

    Google Scholar 

  • Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16:921–932

    PubMed  CAS  Google Scholar 

  • Ye JH, Houle JD (1997) Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol 143:70–81

    PubMed  CAS  Google Scholar 

  • Yoshimoto Y, Lin Q, Collier TJ, Frim DM, Breakefield XO, Bohn MC (1995) Astrocytes retrovirally transduced with BDNF elicit behavioral improvement in a rat model of Parkinson’s disease. Brain Res 691:25–36

    PubMed  CAS  Google Scholar 

  • Z’Graggen WJ, Metz GA, Kartje GL, Thallmair M, Schwab ME (1998) Functional recovery and enhanced corticofugal plasticity after unilateral pyramidal tract lesion and blockade of myelin-associated neurite growth inhibitors in adult rats. J Neurosci 18:4744–4757

    PubMed  Google Scholar 

  • Zeev-Brann AB, Lazarov-Spiegler O, Brenner T, Schwartz M (1998) Differential effects of central and peripheral nerves on macrophages and microglia. Glia 23:181–190

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blesch, A., Tuszynski, M.H. (2002). Ex Vivo Gene Therapy in the Central Nervous System. In: Marcoux, F.W., Choi, D.W. (eds) CNS Neuroprotection. Handbook of Experimental Pharmacology, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06274-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06274-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07625-1

  • Online ISBN: 978-3-662-06274-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics