Advertisement

Large Clostridial Cytotoxins as Tools in Cell Biology

  • I. Just
  • P. Boquet
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 250)

Abstract

Clostridium difficile toxin A and B, the lethal and haemorrhagic toxin from Clostridium sordellii and the α-toxin from Clostridium novyi are encompassed in the family of large clostridial cytotoxins (LCC) (Von Eichel-Streiber et al. 1996; Boquet: et al. 1998). This designation came from their molecular mass of about 300kDa and their obvious cytotoxic activity to induce disaggregation of the actin cytoskeleton. Despite their comparable toxic activities towards cultured cell lines, the toxins are produced by strains which are involved in distinct disease entities (Hatheway 1990). The best characterised are toxins A and B from C. difficile, which are of major clinical importance causing antibiotic-associated pseudomembranous colitis (Kelly et al. 1994; Kelly and LaMont 1998).

Keywords

Actin Cytoskeleton Lethal Toxin Distinct Disease Entity Iota Toxin GTPase Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achiriloaie M, Barylko B, Albanesi JP (1999) Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol Cell Biol 19: 1410–1415PubMedGoogle Scholar
  2. Aktories K, Just I (1990) Botulinum C2 toxin. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G-proteins. American Society for Microbiology, Washington, D.C., pp 79–95Google Scholar
  3. Aktories K, Prepens U, Sehr P, Just I (1997) Probing the actin cytoskeleton by Clostridium botufiuum C2 toxin and Clostridium perfringens iota toxin. In: Aktories K (ed) Bacterial toxins. Chapman & Hall, Weinheim, pp 129–139CrossRefGoogle Scholar
  4. Bokoch GM, Der CJ (1993) Emerging concepts in the Ras superfamily of GTP-binding proteins. FASEB J 7: 750–759PubMedGoogle Scholar
  5. Boguet P, Munro P, Fiorentini C, Just I (1998) Toxins from anaerobic bacteria: specificity and molecular mechanisms of action. Current Opinion in Microbiology 1: 66–74CrossRefGoogle Scholar
  6. Bourne HR (1997) The arginine finger strikes again. Nature 389: 673–674PubMedCrossRefGoogle Scholar
  7. Chardin P (1993) In: Dicken BF, Birnbaumer L (eds) GTPases in biology. Springer-Verlag, Heidelberg, pp 159–176Google Scholar
  8. Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478 Downward J (1990) The Ras superfamily of small GTP-binding proteins. Trends Biochem Sci 15: 449–477Google Scholar
  9. D’Souza-Schorey C, Boshans RL, McDonough M, Stahl PD, Van Aelst L (1997) A role for PORI, a Racl-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J 16: 5445–5454Google Scholar
  10. Franco M, Peters PJ, Boretto J, van Donselaar E, Neri A, D’Souza-Schorey C, Chavrier P (1999) EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J 18: 1480–1491PubMedCrossRefGoogle Scholar
  11. Fujisawa K, Madaule P, Ishizaki T, Watanabe G, Bito H, Saito Y, Hall A, Narumiya S (1998) Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J Biol Chem 273: 18943–18949PubMedCrossRefGoogle Scholar
  12. Genth H, Aktories K, Just 1 (1999) Monoglucosylation of RhoA at Threonine-37 blocks cytosol-membrane cycling. J Biol Chem 274: 29050–29056Google Scholar
  13. Genth H, Hofmann F, Selzer J, Rex G, Aktories K, Just I (1996) Difference in protein substrate specificity between hemorrhagic toxin and lethal toxin from Clostridium sordellii. Biochem Biophys Res Commun 229: 370–374PubMedCrossRefGoogle Scholar
  14. Hanckock IC, Paterson HF, Marshall CJ (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57: 1167–1177CrossRefGoogle Scholar
  15. Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99: 521–532PubMedCrossRefGoogle Scholar
  16. Hatheway CL (1990) Toxigenic clostridia. Clin Microbiol Rev 3: 66–98PubMedGoogle Scholar
  17. Herrmann C, Ahmadian MR, Hofmann F, Just I (1998) Functional consequences of monoglucosylation of H-Ras at effector domain amino acid threonine-35. J Biol Chem 273: 16134–16139PubMedCrossRefGoogle Scholar
  18. Hofmann F, Busch C, Prepens U, Just I, Aktories K (1997) Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J Biol Chem 272: 11074–11078PubMedCrossRefGoogle Scholar
  19. Hofmann F, Rex G, Aktories K, Just 1 (1996) The Ras-related protein Ral is monoglucosylated by Clostridium sordellii lethal toxin. Biochem Biophys Res Commun 227: 77–81CrossRefGoogle Scholar
  20. Just I, Selzer J, Hofmann F, Aktories K (1997) Clostridium difficile toxin B as a probe for Rho GTPases. In: Aktories K (ed) Bacterial toxins - tools in cell biology and pharmacology. Chapman & Hall, Weinheim, pp 159–168Google Scholar
  21. Just I, Selzer J, Hofmann F, Green GA, Aktories K (1996) Inactivation of Ras by Clostridium sordellii lethal toxin-catalyzed glucosylation. J Biol Chem 271: 10149–10153PubMedCrossRefGoogle Scholar
  22. Just I, Selzer.I, Wilm M, Von Fichel-Streiber C. Mann M, Aktories K (1995a) Glucosyiation of Rho proteins by Clostridium difficile toxin B. Nature 375:50(1 503Google Scholar
  23. Just I, Wihn M. Selzer J. Rex G, Von Eichel-Streiber C, Mann M. Aktories K (1995b) The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins..1 Biol Chem 270: 13932–13930Google Scholar
  24. Kelly CP, LaMont IT (1998) Clostridium rli/fuit)’ infection. Anna Rev Med 49: 375 300Google Scholar
  25. Kelly CP, Pothoulakis C, I iTNont JT (1994) Casuridiumt difficile colitis. New England.1 Med 330(4): 257–262Google Scholar
  26. Kozma R, Ahmed S, Best A, Lim L (1996) “[he GTPase activating protein n-chimaerin cooperates with Racl and (’c1c4211s to induce the formation of Iamellipodia and 6lopodia. Mol Cell Biol 16: 5069–5080Google Scholar
  27. Lyerly DM, Wilkins TI) (1995) Clostridium difficile. In: Blaser MJ, Smith PD. Ravdin.11, Greenberg HR.Google Scholar
  28. Guerrant RL (eds) infections of the Gastrointestinal Tract. Raven Press Ltd.. Nov York. pp 867 891 Madaule P. Eda M. Watanabe N. Fujisaroa K, Matsuoka T. Rito 11, Ishizaki T, Narumiya S (1998) Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394: 491–494CrossRefGoogle Scholar
  29. Miki H, Sasaki T, Tokai Y, Takanawa T (1998) induction of lilopodium formation by a WASP-related actin depolynierizing protein N-WASP. Nature 391: 93 96Google Scholar
  30. Nassar N, Horn G, Heurman C, Scheter A. Mc C’ormick 1, Wittinghofer A (1995) The 2_2 A crystal structure of the Ras binding domain of the serineíthreonine kinase C Rai in complex with Rapl A and a GTP analogue. Nature 375: 554 560Google Scholar
  31. Nobes CD, Hall A (1995) Rho, Rae, (’óc42 GTPascs regulate the assembly of niuhimolecular local complexes associated with actin stress fibres lamellipodia tmd tilopodia. (’ell 81: 1 20Google Scholar
  32. Popoli MR, Chaves OE, Lemichez E, Von Eichel-Streiber (’, Thelestam M, Chardin P. Cussac D. Chavrier P, Flatau G, Giry M, Gunzhurg J, Roquet P (1996) Ras. Rap, and Rae small GIP-binding proteins are targets for Clostridium sordel/ii lethal toxin glucosylation. J Biol (’hem 271: 10217 10224Google Scholar
  33. Pai EF, Krengel U, Petsko (ìA, Goody RS, Kabsch W, Wittinghofer A (1990) Relined crystal structure of the triphosphate conformation of the 14-ras p21 at 1,35A resolution: implication for the mechanism of GTP hydrolysis. EMBO J 9: 2351 2359Google Scholar
  34. Pothoulakis C. Gilbert RJ, Cladaras (’, C’astagliuolo I. Semenza G, tutti Y, Montcrief JS, l.inessky Kelly CP, Nikulasson S. Desai HP, Wilkins TI), LaMont.11: (1996) Rabbit sucrase-isomattase contains a functional intestinal receptor for Clostridium difficile toxin A..) (’lin Invest 98: 641 649Google Scholar
  35. Ridley A, liai! A (1992) The small GTP-binding protein Rho regulates the assembly of local adhesion and actin stress libres in response to growth factor. Cell 70: 389 399Google Scholar
  36. Ridley A, Paterson I1F, Johnston (’I., Dieckman O. Hall A (1992) The small GTP-binding protein Rue regulates growth factor-induced membrane ruffling. Cell 70: 401 410Google Scholar
  37. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T. Kirschner MW (1999) The into-action between N-WASP and the Arp2i3 complex links Cdc42-dependent signals to actin assembly. Cell 97: 221 231Google Scholar
  38. Sander FE, ten Klooster.JP, Van Delft S, Van der Kanunen A, Collard JO (1999) Rae downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behaviour..1 Cell Biol 147: 1009 1021Google Scholar
  39. Sanders l.C, Matsamura F, Bokoch GM. de Lanerolle P(1999) Inhibition of myosin light chain kinase by p21-activated kinase. Science 283: 2083 2085CrossRefGoogle Scholar
  40. Sasaki T, Takai Y (1998) The Rho small G protein family-Rho GDl system as a temporal and spatial determinant for cytoskeletal control. Biochem Biophys Res Commun 245: 641 664Google Scholar
  41. Sells MA, Boyd JT. Chernoti J (1999) P21-activated kinase I Il’AKII regulates cell mobility in mammalian fibroblasts. J (’ell 13iol 145:837 849Google Scholar
  42. Schellick K, Ahmadian MR, Kabsch W, Wiesmüller L, I autwein A. Schmitz F. Wittinghofer A (1997) The Ras GAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutant. Science 277: 333 338Google Scholar
  43. Schiavo G. Qu-Ming Gu, Prestwich GD, Sitllner T11, Rothman JE (1996) Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. PNAS 93: 13327 13332Google Scholar
  44. Schmidt M. Vo M. Thiel M, Bauer B, Graunass A, Tapp E. Cool RF-I. De Gunzburg J, Von lidielSlreiber C, Jakobs KH (1998) Specific inhibition of phorbol ester-stimulated phospholipase I) by Clostridium[sordellii lethal toxin and Clostridium difici/e toxin 13–1470 in I ILK-293 cells..1 Biol Chem 273: 7413–7422Google Scholar
  45. Sehr P, Joseph G, Genth H, Just I, Pick F., Aktories K (1998) Glucosylation and ADP-ribosylation of Rho proteins effects on nucleotide binding, GTPase activity. and effector-coupling. Biochemistry 37: 5296 5304Google Scholar
  46. Van Aclst L., D’Souza-Schorey C(1997) Rho GTPascs and signaling networks. Genes Dev 11: 2205 2322Google Scholar
  47. Vojtek AB, Cooper JA (1995) Rho fancily members: activators of MAP kinase cascades. Cell 82: 527–529PubMedCrossRefGoogle Scholar
  48. Von Michel-Strciber C, Roquet P, Sauerhorn M, Thelestam M (1996) Large clostridial cytotoxius a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol V4: 375–382CrossRefGoogle Scholar
  49. Wittinghofer A, Valencia A (1995) Three dimensional structure of Ras and the ras-related proteins. In: Zerial M, Huber EH (eds) Guidebook to the small GTPases. Oxford University Press, New York, pp 20–29Google Scholar
  50. Zohn IM, Campbell SL, Khosravi-Ear R, Rossuran KL, Der CJ (1998) Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene 17: 1415–1438PubMedCrossRefGoogle Scholar
  51. Zong H, Raman N, Mickelson-Young LA, Atkinson SJ, Quilliam LA (1999) Loop 6 of RhoA confers specificity for effector binding, stress fiber formation, and cellular transformation. J Biot Chem 274: 4551 4560Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • I. Just
    • 1
  • P. Boquet
    • 2
  1. 1.Institut für Pharmakologie und ToxikologieUniversität FreiburgFreiburgGermany
  2. 2.INSERM U 452Faculté de MédecineNiceFrance

Personalised recommendations