Skip to main content

Large Clostridial Cytotoxins as Tools in Cell Biology

  • Chapter
Clostridium difficile

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 250))

Abstract

Clostridium difficile toxin A and B, the lethal and haemorrhagic toxin from Clostridium sordellii and the α-toxin from Clostridium novyi are encompassed in the family of large clostridial cytotoxins (LCC) (Von Eichel-Streiber et al. 1996; Boquet: et al. 1998). This designation came from their molecular mass of about 300kDa and their obvious cytotoxic activity to induce disaggregation of the actin cytoskeleton. Despite their comparable toxic activities towards cultured cell lines, the toxins are produced by strains which are involved in distinct disease entities (Hatheway 1990). The best characterised are toxins A and B from C. difficile, which are of major clinical importance causing antibiotic-associated pseudomembranous colitis (Kelly et al. 1994; Kelly and LaMont 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achiriloaie M, Barylko B, Albanesi JP (1999) Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol Cell Biol 19: 1410–1415

    PubMed  CAS  Google Scholar 

  • Aktories K, Just I (1990) Botulinum C2 toxin. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G-proteins. American Society for Microbiology, Washington, D.C., pp 79–95

    Google Scholar 

  • Aktories K, Prepens U, Sehr P, Just I (1997) Probing the actin cytoskeleton by Clostridium botufiuum C2 toxin and Clostridium perfringens iota toxin. In: Aktories K (ed) Bacterial toxins. Chapman & Hall, Weinheim, pp 129–139

    Chapter  Google Scholar 

  • Bokoch GM, Der CJ (1993) Emerging concepts in the Ras superfamily of GTP-binding proteins. FASEB J 7: 750–759

    PubMed  CAS  Google Scholar 

  • Boguet P, Munro P, Fiorentini C, Just I (1998) Toxins from anaerobic bacteria: specificity and molecular mechanisms of action. Current Opinion in Microbiology 1: 66–74

    Article  Google Scholar 

  • Bourne HR (1997) The arginine finger strikes again. Nature 389: 673–674

    Article  PubMed  CAS  Google Scholar 

  • Chardin P (1993) In: Dicken BF, Birnbaumer L (eds) GTPases in biology. Springer-Verlag, Heidelberg, pp 159–176

    Google Scholar 

  • Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478 Downward J (1990) The Ras superfamily of small GTP-binding proteins. Trends Biochem Sci 15: 449–477

    Google Scholar 

  • D’Souza-Schorey C, Boshans RL, McDonough M, Stahl PD, Van Aelst L (1997) A role for PORI, a Racl-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J 16: 5445–5454

    Google Scholar 

  • Franco M, Peters PJ, Boretto J, van Donselaar E, Neri A, D’Souza-Schorey C, Chavrier P (1999) EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J 18: 1480–1491

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa K, Madaule P, Ishizaki T, Watanabe G, Bito H, Saito Y, Hall A, Narumiya S (1998) Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J Biol Chem 273: 18943–18949

    Article  PubMed  CAS  Google Scholar 

  • Genth H, Aktories K, Just 1 (1999) Monoglucosylation of RhoA at Threonine-37 blocks cytosol-membrane cycling. J Biol Chem 274: 29050–29056

    CAS  Google Scholar 

  • Genth H, Hofmann F, Selzer J, Rex G, Aktories K, Just I (1996) Difference in protein substrate specificity between hemorrhagic toxin and lethal toxin from Clostridium sordellii. Biochem Biophys Res Commun 229: 370–374

    Article  PubMed  CAS  Google Scholar 

  • Hanckock IC, Paterson HF, Marshall CJ (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57: 1167–1177

    Article  Google Scholar 

  • Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99: 521–532

    Article  PubMed  CAS  Google Scholar 

  • Hatheway CL (1990) Toxigenic clostridia. Clin Microbiol Rev 3: 66–98

    PubMed  CAS  Google Scholar 

  • Herrmann C, Ahmadian MR, Hofmann F, Just I (1998) Functional consequences of monoglucosylation of H-Ras at effector domain amino acid threonine-35. J Biol Chem 273: 16134–16139

    Article  PubMed  CAS  Google Scholar 

  • Hofmann F, Busch C, Prepens U, Just I, Aktories K (1997) Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J Biol Chem 272: 11074–11078

    Article  PubMed  CAS  Google Scholar 

  • Hofmann F, Rex G, Aktories K, Just 1 (1996) The Ras-related protein Ral is monoglucosylated by Clostridium sordellii lethal toxin. Biochem Biophys Res Commun 227: 77–81

    Article  CAS  Google Scholar 

  • Just I, Selzer J, Hofmann F, Aktories K (1997) Clostridium difficile toxin B as a probe for Rho GTPases. In: Aktories K (ed) Bacterial toxins - tools in cell biology and pharmacology. Chapman & Hall, Weinheim, pp 159–168

    Google Scholar 

  • Just I, Selzer J, Hofmann F, Green GA, Aktories K (1996) Inactivation of Ras by Clostridium sordellii lethal toxin-catalyzed glucosylation. J Biol Chem 271: 10149–10153

    Article  PubMed  CAS  Google Scholar 

  • Just I, Selzer.I, Wilm M, Von Fichel-Streiber C. Mann M, Aktories K (1995a) Glucosyiation of Rho proteins by Clostridium difficile toxin B. Nature 375:50(1 503

    Google Scholar 

  • Just I, Wihn M. Selzer J. Rex G, Von Eichel-Streiber C, Mann M. Aktories K (1995b) The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins..1 Biol Chem 270: 13932–13930

    CAS  Google Scholar 

  • Kelly CP, LaMont IT (1998) Clostridium rli/fuit)’ infection. Anna Rev Med 49: 375 300

    Google Scholar 

  • Kelly CP, Pothoulakis C, I iTNont JT (1994) Casuridiumt difficile colitis. New England.1 Med 330(4): 257–262

    Google Scholar 

  • Kozma R, Ahmed S, Best A, Lim L (1996) “[he GTPase activating protein n-chimaerin cooperates with Racl and (’c1c4211s to induce the formation of Iamellipodia and 6lopodia. Mol Cell Biol 16: 5069–5080

    Google Scholar 

  • Lyerly DM, Wilkins TI) (1995) Clostridium difficile. In: Blaser MJ, Smith PD. Ravdin.11, Greenberg HR.

    Google Scholar 

  • Guerrant RL (eds) infections of the Gastrointestinal Tract. Raven Press Ltd.. Nov York. pp 867 891 Madaule P. Eda M. Watanabe N. Fujisaroa K, Matsuoka T. Rito 11, Ishizaki T, Narumiya S (1998) Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394: 491–494

    Article  Google Scholar 

  • Miki H, Sasaki T, Tokai Y, Takanawa T (1998) induction of lilopodium formation by a WASP-related actin depolynierizing protein N-WASP. Nature 391: 93 96

    Google Scholar 

  • Nassar N, Horn G, Heurman C, Scheter A. Mc C’ormick 1, Wittinghofer A (1995) The 2_2 A crystal structure of the Ras binding domain of the serineíthreonine kinase C Rai in complex with Rapl A and a GTP analogue. Nature 375: 554 560

    Google Scholar 

  • Nobes CD, Hall A (1995) Rho, Rae, (’óc42 GTPascs regulate the assembly of niuhimolecular local complexes associated with actin stress fibres lamellipodia tmd tilopodia. (’ell 81: 1 20

    Google Scholar 

  • Popoli MR, Chaves OE, Lemichez E, Von Eichel-Streiber (’, Thelestam M, Chardin P. Cussac D. Chavrier P, Flatau G, Giry M, Gunzhurg J, Roquet P (1996) Ras. Rap, and Rae small GIP-binding proteins are targets for Clostridium sordel/ii lethal toxin glucosylation. J Biol (’hem 271: 10217 10224

    Google Scholar 

  • Pai EF, Krengel U, Petsko (ìA, Goody RS, Kabsch W, Wittinghofer A (1990) Relined crystal structure of the triphosphate conformation of the 14-ras p21 at 1,35A resolution: implication for the mechanism of GTP hydrolysis. EMBO J 9: 2351 2359

    Google Scholar 

  • Pothoulakis C. Gilbert RJ, Cladaras (’, C’astagliuolo I. Semenza G, tutti Y, Montcrief JS, l.inessky Kelly CP, Nikulasson S. Desai HP, Wilkins TI), LaMont.11: (1996) Rabbit sucrase-isomattase contains a functional intestinal receptor for Clostridium difficile toxin A..) (’lin Invest 98: 641 649

    Google Scholar 

  • Ridley A, liai! A (1992) The small GTP-binding protein Rho regulates the assembly of local adhesion and actin stress libres in response to growth factor. Cell 70: 389 399

    Google Scholar 

  • Ridley A, Paterson I1F, Johnston (’I., Dieckman O. Hall A (1992) The small GTP-binding protein Rue regulates growth factor-induced membrane ruffling. Cell 70: 401 410

    Google Scholar 

  • Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T. Kirschner MW (1999) The into-action between N-WASP and the Arp2i3 complex links Cdc42-dependent signals to actin assembly. Cell 97: 221 231

    Google Scholar 

  • Sander FE, ten Klooster.JP, Van Delft S, Van der Kanunen A, Collard JO (1999) Rae downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behaviour..1 Cell Biol 147: 1009 1021

    Google Scholar 

  • Sanders l.C, Matsamura F, Bokoch GM. de Lanerolle P(1999) Inhibition of myosin light chain kinase by p21-activated kinase. Science 283: 2083 2085

    Article  Google Scholar 

  • Sasaki T, Takai Y (1998) The Rho small G protein family-Rho GDl system as a temporal and spatial determinant for cytoskeletal control. Biochem Biophys Res Commun 245: 641 664

    Google Scholar 

  • Sells MA, Boyd JT. Chernoti J (1999) P21-activated kinase I Il’AKII regulates cell mobility in mammalian fibroblasts. J (’ell 13iol 145:837 849

    Google Scholar 

  • Schellick K, Ahmadian MR, Kabsch W, Wiesmüller L, I autwein A. Schmitz F. Wittinghofer A (1997) The Ras GAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutant. Science 277: 333 338

    Google Scholar 

  • Schiavo G. Qu-Ming Gu, Prestwich GD, Sitllner T11, Rothman JE (1996) Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. PNAS 93: 13327 13332

    Google Scholar 

  • Schmidt M. Vo M. Thiel M, Bauer B, Graunass A, Tapp E. Cool RF-I. De Gunzburg J, Von lidielSlreiber C, Jakobs KH (1998) Specific inhibition of phorbol ester-stimulated phospholipase I) by Clostridium[sordellii lethal toxin and Clostridium difici/e toxin 13–1470 in I ILK-293 cells..1 Biol Chem 273: 7413–7422

    Google Scholar 

  • Sehr P, Joseph G, Genth H, Just I, Pick F., Aktories K (1998) Glucosylation and ADP-ribosylation of Rho proteins effects on nucleotide binding, GTPase activity. and effector-coupling. Biochemistry 37: 5296 5304

    Google Scholar 

  • Van Aclst L., D’Souza-Schorey C(1997) Rho GTPascs and signaling networks. Genes Dev 11: 2205 2322

    Google Scholar 

  • Vojtek AB, Cooper JA (1995) Rho fancily members: activators of MAP kinase cascades. Cell 82: 527–529

    Article  PubMed  CAS  Google Scholar 

  • Von Michel-Strciber C, Roquet P, Sauerhorn M, Thelestam M (1996) Large clostridial cytotoxius a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol V4: 375–382

    Article  Google Scholar 

  • Wittinghofer A, Valencia A (1995) Three dimensional structure of Ras and the ras-related proteins. In: Zerial M, Huber EH (eds) Guidebook to the small GTPases. Oxford University Press, New York, pp 20–29

    Google Scholar 

  • Zohn IM, Campbell SL, Khosravi-Ear R, Rossuran KL, Der CJ (1998) Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene 17: 1415–1438

    Article  PubMed  CAS  Google Scholar 

  • Zong H, Raman N, Mickelson-Young LA, Atkinson SJ, Quilliam LA (1999) Loop 6 of RhoA confers specificity for effector binding, stress fiber formation, and cellular transformation. J Biot Chem 274: 4551 4560

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Just, I., Boquet, P. (2000). Large Clostridial Cytotoxins as Tools in Cell Biology. In: Aktories, K., Wilkins, T.D. (eds) Clostridium difficile. Current Topics in Microbiology and Immunology, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06272-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06272-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08668-7

  • Online ISBN: 978-3-662-06272-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics