Imaging the Lymph Nodes: CT, MRI, and PET

  • E. E. Coche
  • T. Duprez
  • M. Lonneux
Part of the Medical Radiology book series (MEDRAD)

Abstract

The detection of malignant lymph nodes remains a major challenge in spite of the marked improvement in currently available imaging modalities (Van den Brekel and Castelijns 1999). Cross-sectional techniques capable of 3D reconstruction such as computed tomography (CT) and magnetic resonance imaging (MRI) are now in standard use for the radiological staging of nodal status. However in spite of improved technology regarding the speed of image acquisition, spatial resolution, 3D image post-processing and even tissue contrast modulation, their capacity for tissue characterization is limited (Carrington 1998). Integrating other modalities to obtain additional information on e.g. the vascular architecture of the nodes (color Doppler ultrasound), or on metabolic indexes such as glucose uptake [positron emission tomography (PET)] is essential to achieve increased sensitivity and specificity of the pre- and post-treatment nodal work-up of patients with neoplastic disease (Jabour et al. 1993; Moritz et al. 2000). Vast research areas are being explored in the field of MRI on intrinsic tissue parameter measurements and organ-targeted contrast agents (Anzai and Prince 1997; Dooms et al. 1985; Hoffman et al. 2000). The combined anatomical (CT/MR) and metabolic (PET) data provided in a single view through image fusion is being increasingly used, as this technological refinement has been reported to provide enhanced sensitivity and specificity thresholds in malignant lymph node depiction (Wahl et al. 1994).

Keywords

Attenuation Iodine Tuberculosis Oncol Sarcoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aassar et al (1999) Metastatic head and neck cancer: role and usefulness of FDG PET in locating occult primary tumors. Radiology 210: 177–181PubMedGoogle Scholar
  2. Abdel-Nabi H et al (1998) Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 206: 755–760PubMedGoogle Scholar
  3. Adams S et al (1998) Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med 25: 1255–1260PubMedGoogle Scholar
  4. Adler L et al (1997) Axillary lymph node metastases: screening with [F-1812-deoxy-2-D-glucose (FDG) PET. Radiology 203: 323–327PubMedGoogle Scholar
  5. American Joint Committee on Cancer (1992) Lung. In: Beahrs OH, Henson DE, Hutter RVP et al (eds) Manual for staging cancer, 4th edn. Lippincott, Philadelphia, pp 115–121Google Scholar
  6. American Thoracic Society (1983) Medical Section of the American Lung Association. Clinical staging of primary lung cancer. Am Rev Respir Dis 127: 659–664Google Scholar
  7. Anzaï Y,Prince MR (1997) Iron-oxide enhanced MR lymphography: the evaluation of cervical lymph node metastases in head and neck cancer. J Magn Reson Imag 7:75–81Google Scholar
  8. Avril N et al (1996) Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabelled 2-(fluorine-18)-fluoro-2deoxy-D-glucose. J Natl Cancer Inst 88: 1204–1209PubMedGoogle Scholar
  9. Barrington S, Maisey M (1996) Skeletal muscular uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 37: 1127–1129PubMedGoogle Scholar
  10. Benchaou M et al (1996) The role of FDG-PET in the preoperative assessment of N-staging in head and neck cancer. Acta Otolaryngol 116: 332–335PubMedGoogle Scholar
  11. Block M et al (1997) Improvement in staging of esophageal cancer with the addition of positron emission tomography. Ann Thorac Surg 64: 770–776PubMedGoogle Scholar
  12. Bohuslavizki KH et al (2000) FDG PET detection of unknown primary tumors. J Nucl Med 41: 816–822PubMedGoogle Scholar
  13. Braams J et al (1995) Detection of lymph node metastases of squamous-cell cancer of the head and neck with FDG-PET and MRI. J Nucl Med 36: 211–216PubMedGoogle Scholar
  14. Brink J (1995) Technical aspects of helical (spiral) CT. Radiol Clin North Am 33: 834–851Google Scholar
  15. Brown R, Wahl R (1993) Overexpression of GLUT-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72: 2979–2985PubMedGoogle Scholar
  16. Brown R et al (1996) Intratumoral distribution of tritiated FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 37: 1043–1047Google Scholar
  17. Burgman P et al (2001) Hypoxia-induced increase in FDG uptake in MCF7 cells. J Nucl Med 42: 170–175PubMedGoogle Scholar
  18. Bury T et al (1996) Staging of the mediastinum: value of positron emission tomography imaging in non-small cell lung cancer. Eur Respir J 9: 2560–2564PubMedGoogle Scholar
  19. Bustamente E, Pedersen P (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 74: 3735–3739Google Scholar
  20. Carrington B (1998) Lymph nodes. In: Husband JHS, Reznek RH (eds) Imaging in oncologic. Isis Medical Media, Oxford, pp 729–748Google Scholar
  21. Chin R et al (1995) Mediastinal staging of non-small-cell lung cancer with positron emission tomography. Am J Respir Crit Care Med 152: 2090–2096PubMedGoogle Scholar
  22. Chong VFH et al (1996) MR features of cervical node necrosis in metastatic disease. Clin Radiol 51: 103–109PubMedGoogle Scholar
  23. Cline HE et al (1991) 3D surface rendered MR images of the brain and its vasculature. J Comput Assist Tomogr 15:344–351Google Scholar
  24. Cremerius U et al (1998) FDG-PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med 39: 815–822PubMedGoogle Scholar
  25. Curtin HD et al (1998) Comparison of CT and MR imaging in staging of neck metastases. Radiology 207: 123–130PubMedGoogle Scholar
  26. Cymbalista M et al (1999) CT demonstration of the 1996 AJCCUICC regional lymph node classification for lung cancer staging. Radiographics 19: 899–900PubMedGoogle Scholar
  27. Delbeke D et al (1999) FDG PET and dual-head gamma camera positron coincidence detection imaging of suspected malignancies and brain disorders. J Nucl Med 40: 110–117PubMedGoogle Scholar
  28. Diederichs C et al (2000) Values and limitations of 18F-fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas 20: 109–116PubMedGoogle Scholar
  29. Dillon WP, Harnsberger HR (1991) The impact of radiologic imaging on staging of cancer of the head and neck. Semin Oncol 18: 64–79PubMedGoogle Scholar
  30. DiMartino E et al (2000) Diagnosis and staging of head and neck caner. Arch Otolaryngol Head Neck Surg 126: 1457–1461Google Scholar
  31. Dolan PA (1963) Tumor calcification following therapy. Am J Ro entgen of 89: 166–174Google Scholar
  32. Dooms GC et al (1985) Characterization of lymphadenopathy by magnetic resonance relaxation times: preliminary results. Radiology 155: 691–697PubMedGoogle Scholar
  33. Dorfman RE et al (1991) Upper abdominal lymph nodes: criteria for normal size determined with CT. Radiology180: 319–322Google Scholar
  34. Eisenkraft BL, Som PM (1999) The spectrum of benign and malignant etiologies of cervical node calcification. Am J Roentgenol 172: 1433–1437Google Scholar
  35. Flamen P et al (2000) Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma. J Clin Oncol 18: 3202–3210PubMedGoogle Scholar
  36. Fuchs T et al (2000) Technical advances in multi-slice spiral CT. Eur J Radiol 36: 69–73PubMedGoogle Scholar
  37. Fujimoto Y et al (2000) Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium diethylenetriamine pentaacetic acid. Biol Pharm Bull 23: 97–100PubMedGoogle Scholar
  38. Fullbright et al (1994) MR of the head and neck: comparison of fast spin-echo and conventional spin-echo sequences. Am J Neuroradiol 15: 767–773Google Scholar
  39. Ghahremani GG, Straus FH (1971) Calcification of distant lymph node metastases from carcinoma of colon. Radiology 99: 65–66PubMedGoogle Scholar
  40. Gillams et al (1996) Magnetization transfer contrast MR in lesions of the head and neck. Am J Neuroradiol 17: 355–360PubMedGoogle Scholar
  41. Giraud P et al (2001) CT and (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 49: 1249–1257PubMedGoogle Scholar
  42. Grégoire V et al (2000) Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. Radiother Oncol 56: 135–150PubMedGoogle Scholar
  43. Grossman RI et al (1994) Magnetization transfer: theory and applications in neuroradiology. Radiographics 14: 279–90PubMedGoogle Scholar
  44. Guhlmann A et al (1997) Lymph node staging in non-small cell lung cancer: evaluation by [F]FDG positron emission tomography (PET). Thorax 52: 438–441PubMedCentralPubMedGoogle Scholar
  45. Gussack GS, Hudgins PA (1991) Imaging modalities in recur- rent head and neck tumors. Laryngoscope 101: 119–124PubMedGoogle Scholar
  46. Han JK et al (2000) Factors influencing vascular and hepatic enhancement at CT: experimental study on injection protocol using a canine model. J Comput Assist Tomogr 24: 400–406PubMedGoogle Scholar
  47. Hanasono MM et al (1999) Uses and limitations of FDG positron emission tomography in patients with head and neck cancer. Laryngoscope 109: 880–885PubMedGoogle Scholar
  48. Harika et al (1996) Macromolecular intravenous contrast agent for MR lymphography: characterization and efficacy studies. Radiology 198: 365–370PubMedGoogle Scholar
  49. Harris EW et al (1996) Enhanced CT of the neck: improved visualization of lesions with delayed imaging. Am J Roentgenol 167: 1057–1058Google Scholar
  50. Held P, Breit A (1994) MRI and CT of tumors of the pharynx: comparison of two imaging procedures including fast and ultrafast MR sequences. Eur J Radiol 18: 81–89PubMedGoogle Scholar
  51. Hennig J et al (1986) RARE-imaging. A fast imaging method for clinical MR. Magn Reson Med 3: 829–833Google Scholar
  52. Hoffman HT et al (2000) Functional magnetic resonance imaging using iron oxide particles in characterizing head and neck adenopathy. Laryngoscope 110: 1425–1430PubMedGoogle Scholar
  53. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). Description of system. Br J Radiol 46: 1016–1022PubMedGoogle Scholar
  54. Hustinx R et al (2000) Impact of attenuation correction on the accuracy of FDG-PET in patient with abdominal tumors: a free-response ROC analysis. Eur J Nucl Med 27: 1365–1371PubMedGoogle Scholar
  55. labour BA et al (1993) Extracranial head and neck: PET imaging with 2-(18)fluoro-2-deoxy-n-glucose and MR imaging correlations. Radiology 186: 27–35Google Scholar
  56. Kalender WA et al (1990) Spiral volumetric CT with singlebreath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176: 181–183PubMedGoogle Scholar
  57. Kalender WA et al (1994) A comparison of conventional and spiral CT: an experimental study on the detection of spherical lesions. J Comput Assist Tomogr 18: 167–176PubMedGoogle Scholar
  58. Klingenbeck-Regn K et al (1999) Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 31: 110–124PubMedGoogle Scholar
  59. Kubota R et al (1992) Intratumoral distribution of fluorine18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33: 1972–1980PubMedGoogle Scholar
  60. Laissey JP et al (1994) Enlarged mediastinal lymph nodes in bronchogenic carcinoma: assessment with dynamic contrast-enhanced MR imaging. Radiology 191: 263–267Google Scholar
  61. Landoni C et al (1999) Comparison of dual-head coincidence PET versus ring PET in tumor patients. J Nucl Med 40: 1617–1622PubMedGoogle Scholar
  62. Langen K et al (1993) The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 34: 355–359PubMedGoogle Scholar
  63. Laubenbacher C et al (1995) Comparison of fluorine-18fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. J Nucl Med 36: 1747–1757PubMedGoogle Scholar
  64. Lebihan D, Turner R (1991) Intravoxel incoherent motion imaging using spin echoes. Magn Reson Med 19: 211–227Google Scholar
  65. Lerut T et al (2000) Hitopathologic validation of lymph node staging with FDG-PET scan in cancer of the esophagus and gastroesophageal junction. A prospective study based on primary surgery with extensive lymphadenectomy. Ann Surg 232: 743–752PubMedCentralPubMedGoogle Scholar
  66. Leung AN (1997) Spiral CT of the thorax in daily practice: optimization of the technique. J Thoracic Imag 12. 2–10Google Scholar
  67. Lonneux M et al (1998) Can dual-headed 18F-FDG SPECT imaging reliably supersede PET in clinical oncology? A comparative study in lung and gastrointestinal tract cancer. Nucl Med Commun 19: 1047–1054PubMedGoogle Scholar
  68. Lonneux M et al (1999) Attenuation correction in whole body FDG oncological studies: the role of statistical reconstruction. Eur J Nucl Med 6: 591–598Google Scholar
  69. Magnusson M et al (1991) Evaluation of methods for shaded surface display of CT volumes. Comput Med Imaging Graphics 15: 247–256Google Scholar
  70. Mancuso AA et al (1983) Computed tomography of cervical and retropharyngeal lymph nodes: normal anatomy, variants of normal, and application in staging head and neck cancer. Radiology 148: 715–723PubMedGoogle Scholar
  71. Martin Wet al (1995) FDG-SPECT: correlation with FDG-PET. J Nucl Med 36: 988–995Google Scholar
  72. McLoud TC et al (1992) Bronchogenic carcinoma: analysis of staging in the mediastinum with CT by correlative lymph node mapping and sampling. Radiology 182: 319–323PubMedGoogle Scholar
  73. Mellanen P et al (1994) Expression of glucose transporters in head and neck tumors. Int J Cancer 56: 622–629PubMedGoogle Scholar
  74. Misselwitz B et al (1999) Gadoflurorine 8: initial experience with a new contrast medium for interstitial MR lymphography. MAGMA 8: 190–195PubMedGoogle Scholar
  75. Mitchell DG (1999) MRI principles. Saunders, Philadelphia Moog F et al (1997) Lymphoma: role of whole-body 2-deoxy2-[F-18]fluoro-D-glucose ( FDG) PET in nodal staging. Radiology 203: 795–800Google Scholar
  76. Moog F et al (1998a) 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphoma-tous bone marrow. J Clin Oncol 16:603–609Google Scholar
  77. Moog F et al (1998b) Extranodal malignant lymphoma: detec- tion with FDG PET versus CT. Radiology 206: 475–481PubMedGoogle Scholar
  78. Moritz JD, Ludwig A, Oestmann JW (2000) Contrast-enhanced color Doppler sonography of enlarged cervical lymph nodes in head and neck tumors. Am J Roentgenol 174: 1279–1284Google Scholar
  79. Mukherji SK et al (2000) The ability of dual camera coincidence tomography 18F fluorodeoxyglucose imaging to differentiate recurrent head and neck SCC from post-treatment changes. The Radiological Society of North America, 88th annual scientific assembly, Chicago, paper 473Google Scholar
  80. Myers L et al (1998) Positron emission tomography in the evaluation of the NO neck. Laryngoscope 108: 232–236PubMedGoogle Scholar
  81. Naidich DP et al (1999) Computed tomography and magnetic resonance of the thorax. Lippincott-Raven, PhiladelphiaGoogle Scholar
  82. Nehmeh SA, Ford E, Rosenzweig K et al (2001) Gated positron emission tomography: a technique for reducing lung tumor motion effect. J Nucl Med 42: 34 PGoogle Scholar
  83. Nestle U et al (1999) 18F-deoxyglucose positrom emission tomogrpahy (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597Google Scholar
  84. Patz E et al (1995) Thoracic nodal staging with PET imaging with 18FDG in patients with bronchogenic carcinoma. Chest 108: 1617–1621PubMedGoogle Scholar
  85. Paulus P et al (1998) 18FDG-PET for the assessment of primary head and neck tumors: clinical, computed tomography and histopathological correlation in 38 patients. Laryngoscope 108:1578–1583Google Scholar
  86. Petrella J, Provenzale J (2000) MR perfusion of the brain: techniques and applications. Am J Roentgenol 175: 207–19Google Scholar
  87. Petterson H (1995) The NICER centennial book. A global textbook of radiology. Nicer Institute, OsloGoogle Scholar
  88. Reske S et al (1997) Overexpression of glucose transporter and increased FDG uptake in pancreatic carcinoma. J Nucl Med 38: 1344–1348PubMedGoogle Scholar
  89. Rinck PA (1993) Magnetic resonance in medicine - the basic textbook of the European MR forum, 3rd edn. Blackwell Scientific, LondonGoogle Scholar
  90. Rubbin GD et al (1998) Thoracic spiral CT: influence of sub-second gantry rotation on image quality. Radiology 208: 771–776Google Scholar
  91. Rouvière H (1948) Anatomie humaine descriptive et topographique, 6th edn. Masson, ParisGoogle Scholar
  92. Rydberg J et al (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20: 1787–1806PubMedGoogle Scholar
  93. Sakai O et al (1997) Asymmetrical or heterogenous enhancement of the internal jugular veins in contrast-enhanced CT of the head and neck. Neuroradiology 39: 292–295PubMedGoogle Scholar
  94. Sakai O et al (2000) Lymph node pathology. Benign proliferative lymphoma, and metastatic disease. Radiol Clin North Am 5: 979–998Google Scholar
  95. Sazaki M et al (1996) The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with non-small cell lung cancer: a comparative study with X-ray computed tomography. Eur J Nucl Med 23: 741–747Google Scholar
  96. Sazon D et al (1996) Fluorodeoxyglucose positron emission tomography in the detection and staging of lung cancer. Am J Respir Crit Care Med 153: 417–421PubMedGoogle Scholar
  97. Scott W et al (1996) Mediastinal lymph node staging of non-small cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. J Thorac Cardiovasc Surg 111: 642–648PubMedGoogle Scholar
  98. Shah N et al (2000) The impact of FDG positron emission tomography imaging on the management of lymphomas. Br J Radiol 73: 482–487PubMedGoogle Scholar
  99. Sheppard LM, Yousem DM (1994) MTI of cervical adenopathies. ASNR, paper 130Google Scholar
  100. Shreve P et al (1998) Oncologic diagnosis with 2-[fluorine18]fluoro-2-deoxy-D-glucose imaging: dual-head coincidence gamma camera versus positron emission torno-graphic scanner. Radiology 207: 431–437PubMedGoogle Scholar
  101. Som PM (1987) Lymph nodes of the neck. Radiology 165: 593–600PubMedGoogle Scholar
  102. Som PM (1992) Detection of metastasis in cervical lymph nodes: CT and MR criteria and differential diagnosis. Am J Roentgenol 158: 961–969Google Scholar
  103. Som PM et al (1999) An imaging-based classification for the cervical nodes designed as an adjunct to recent clinically based nodal classifications. Arch Otolaryngol Head Neck Surg 125: 388–396PubMedGoogle Scholar
  104. Staatz G et al (2001) Interstitial T1-weighted MR lymphography: lipophilic perfiuorinated gadolinium chelates in pigs. Radiology 220: 129–136PubMedGoogle Scholar
  105. Steinert H et al (1997) Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. Radiology 202: 441–446PubMedGoogle Scholar
  106. Stokkel M et al (2000) Preoperative evaluation of patients with primary head and neck cancer using dual-head 18fluorodeoxyglucose positron emission tomography. Ann Surg 231: 229–234PubMedCentralPubMedGoogle Scholar
  107. Sugawara Y et al (1999) Evaluation of FDG PET in patients with cervical cancer. J Nucl Med 40: 1125–1131PubMedGoogle Scholar
  108. Tatsumi M et al (1999) Feasibility of fluorodeoxyglucose dual-head gamma camera coinidence imaging in the evaluation of lung cancer: comparison with FDG PET. J Nucl Med 40: 566–573PubMedGoogle Scholar
  109. Torizuka T et al (1998) Effect of insulin on uptake of FDG by experimental mammary carcinoma in diabetic rats. Radiology 208: 499–504PubMedGoogle Scholar
  110. Towers JM (1993) Spiral or helical CT? Am J Roentgenol 161 (4): 901–902Google Scholar
  111. Valk P et al (1995) Staging non-small cell lung cancer by whole-body positron emision tomographic imaging. Ann Thorac Surg 60: 1573–1582PubMedGoogle Scholar
  112. Van den Brekel MWM, Castelijns JA (1999) New developments in imaging of neck node metastases. In: Mukherji SK, Castelijns JA (eds) Modern head and neck imaging. Springer, Berlin Heidelberg New YorkGoogle Scholar
  113. Van den Brekel MWM, Castelijns JA (2000) Imaging of lymph nodes in the neck. Semin Roentgenol 1: 42–53Google Scholar
  114. Van den Brekel MWM et al (1990a) Cervical lymph node metastasis: assessment of radiologic criteria. Radiology 177: 379–384PubMedGoogle Scholar
  115. Van den Brekel MWM et al (1990b) Detection and characterization of of metastatic cervical adenopathies by MR imaging: comparison of different MR techniques. J Comput Assist Tomogr 14: 581–589PubMedGoogle Scholar
  116. Vansteenkiste JF, Mortelmans L (1999) FDG-PET in the locoregional lymph node staging of non-small cell lung cancer: a comprehensive review of the Leuven lung cancer group experience. Clin Pos Imaging 2: 223–231Google Scholar
  117. Vansteenkiste JF et al (1998a) Lymph node staging in non-small cell lung cancer with FDG-PET scan: a prospective study on 690 lymph node stations from 68 patients. J Clin Oncol 16: 2142–2149PubMedGoogle Scholar
  118. Vansteenkiste JF et al (1998b) FDG-PET scan in potentially operable non-small cell lung cancer: do anatomometabolic PET-CT fusion images improve the localisation of regional lymph node metastases? Eur J Nucl Med 25: 1495–1501PubMedGoogle Scholar
  119. Vanuystel L, Vansteenkiste JF, Stroobants S et al (2000) The impact of (18)F-fluoro-2-deoxy-n-glucose positron emission tomography ( FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55: 317–324Google Scholar
  120. Vuillez JP (1998) Métabolisme glucidique des cellules tumorales: conséquences pour l’utilisation de radiopharmaceutiques analogues du glucose. Med Nucl Imag Fonct Metab 22: 9–29Google Scholar
  121. Wahl RL et al (1994) Staging of mediastinal non-small cell lung cancer FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology 191: 371–377PubMedGoogle Scholar
  122. Wang G, Vannier MW (1994) Longitudinal resolution in volumetric X-ray CT-analytical comparison between conventional and helical CT. Med Phys 21: 429–433PubMedGoogle Scholar
  123. Wang G, Vannier MW (1997) Optimal pitch in spiral computed tomography. Med Phys 24: 1635–1639PubMedGoogle Scholar
  124. Wang G et al (1994) Theoretical FWTM values in helical CT. Med Phys 21: 753–754PubMedGoogle Scholar
  125. Warburg O (1930) The metabolism of tumors. Arnold Constable, London, pp 75–327Google Scholar
  126. Weber G, Cantero A (1955) Glucose-6-phosphatase activity in normal, precancerous, and neoplastic tissues. Cancer Res 15: 105–108PubMedGoogle Scholar
  127. Weber W et al (1999) Assessment of pulmonary lesions with 18F-fluorodeoxyglucose positron imaging using coincidence mode gamma cameras. J Nucl Med 40: 574–578PubMedGoogle Scholar
  128. Wiener JI et al (1986) Breast and axillary tissue MR imaging: correlation of the signal intensities and relaxation times with pathological findings. Radiology 160: 299–305PubMedGoogle Scholar
  129. Younes M et al (1995) GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res 15: 2895–2898PubMedGoogle Scholar
  130. Yousem DM (1999) Magnetization transfer imaging of the extracranial head and neck. In: Mukherji SK, Castelijns JA (eds) Modern head and neck imaging. Springer, Berlin Heidelberg New YorkGoogle Scholar
  131. Yousem DM, Hurst RW (1994) MR of cervical lymph nodes: comparison of fast spin echo and conventional T2 W scans. Clin Radiol 49: 670–675PubMedGoogle Scholar
  132. Yousem DM et al (1992) Central nodal necrosis and extra-capsular neoplastic spread in cervical lymph nodes: MR imaging versus CT. Radiology 182: 753–759PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • E. E. Coche
    • 1
  • T. Duprez
    • 1
  • M. Lonneux
    • 1
  1. 1.Cliniques Universitaires Saint-LucUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations