Skip to main content

Cell Immortality: Maintenance of Cell Division Potential

  • Chapter

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 24))

Abstract

Cell immortality refers to the ability to reproduce indefinitely. This property does not imply constancy of genetic information from generation to generation, since mutation coupled with natural selection and genetic drift may cause genetic changes over successive generations. Furthermore, cells of a germ line ordinarily undergo periodic recombination with cells of other germ lines causing additional genetic change. Nevertheless, all extant cells reflect the ability to reproduce indefinitely, since the ancestry of each cell presumably traces back, in an unbroken lineage for over 3 billion years, to the origin of life. As pointed out by Avise (1993), it is not actually cells which are immortal, but cell lineages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abken H, Hegger R, Butzler C, Willecke K (1993) Short DNA sequences from the cytoplasm of mouse tumor cells induce immortalization of human lymphocytes in vitro. Proc Natl Acad Sci USA 90: 6518–6522

    Article  PubMed  CAS  Google Scholar 

  • Akiyama M, Kyoizumi S, Hirai Y, Kusunoki Y, Iwamoto KS, Nakamura N (1995) Mutation frequency in human blood cells increases with age. Mutat Res 338: 141–149

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell. Garland, London

    Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90: 7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Amicone L, Spagnoli FM, Spath G, Giordano S, Tommasini C, Bernadini S, De Luca V, Della Rocca C, Weiss MC, Comoglio PM, Tripodi M (1997) Transgenic expression in the liver of truncated Met blocks apoptosis and permits immortalization of hepatocytes. EMBO J 16: 495–503

    Article  PubMed  CAS  Google Scholar 

  • Arai T, Kino I (1995) Role of apoptosis in modulation of the growth of human colorectal tubular and villous adenomas. J Pathol 176: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Aufderheide KJ (1987) Clonal aging in Paramecium tetraurelia. II. Evidence of functional changes in the macronucleus with age. Mech Ageing Dev 37: 265–279

    Article  CAS  Google Scholar 

  • Austriaco NR, Guarente LP (1997) Changes of telomere length cause reciprocal changes in the life span of mother cells in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94: 9768–9772

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (1993) The evolutionary biology of aging, sexual reproduction, and DNA repair. Evolution 47: 1293–1301

    Article  Google Scholar 

  • Baeuerle PA, Baltimore D (1996) NF-1(13: Ten years after. Cell 87: 13–20

    Google Scholar 

  • Barrows CH, Kokkonen G (1987) The effect of age and diet on the cellular protein synthesis of liver of male mice. Age 10: 54–57

    Article  CAS  Google Scholar 

  • Bedi A, Pasricha PJ, Akhtar AJ, Barber JP, Bedi GC, Giardiello FM, Zehnbauer BA, Hamilton SR, Jones RJ (1995) Inhibition of apoptosis during development of colorectal cancer. Cancer Res 55: 1811–1816

    PubMed  CAS  Google Scholar 

  • Benson FE, Stasiak A, West SC (1994) Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J 13: 5764–5771

    PubMed  CAS  Google Scholar 

  • Bernstein C, Bernstein H (1991) Aging, Sex and DNA Repair. Academic Press, New York Bernstein H, Byerly HC, Hopf FA, Michod RE (1985) Genetic damage, mutation and the evolution of sex. Science 229: 1277–1281

    CAS  Google Scholar 

  • Bernstein H, Hopf FA, Michod RE (1987) The molecular basis of the evolution of sex. Adv Genet 24: 323–370

    Article  PubMed  CAS  Google Scholar 

  • Bessho T, Mu D, Sancar A (1997) Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5’ to the cross-linked base and removes a 22- to 28-nucleotide-long damage-free strand. Mol Cell Biol 17: 6822–6830

    PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474

    Article  PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life span by introduction of telomerase into normal human cells. Science 279: 349–352

    Article  PubMed  CAS  Google Scholar 

  • Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13: 2097–2104

    PubMed  CAS  Google Scholar 

  • Bowman PD (1985) Aging and the cell cycle in vivo and in vitro. In: Cristofolo VJ, Adelman RC, Roth GS (eds) Handbook of cell biology of aging. CRC Press, Boca Raton, Florida, pp 117–136

    Google Scholar 

  • Buetow DE (1985) Cell numbers vs. age in mammalian tissues and organs. In: Cristofolo VJ, Adelman RC, Roth GS (eds) Handbook of cell biology of aging. CRC Press, Boca Raton, Florida, pp 1–115

    Google Scholar 

  • Burkle A, Grube K, Muller M, Wolf I, Heller B, Kupper JH (1995) Poly(ADP-ribose) polymerase: correlation of enzyme activity with the life span of mammalian species and use of a dominant negative version to elucidate biological functions of poly(ADP ribosyl)ation. In: Cutler RG, Packer L, Bertram J, Mori A (eds) Oxidative stress and aging. Birkhauser, Basle/Switzerland, pp 111–121

    Chapter  Google Scholar 

  • Cai Q, Tian L, Wei H (1996) Age-dependent increase of indigenous DNA adducts in rat brain is associated with a lipid peroxidation product. Exp Gerontol 31: 387–392

    Article  Google Scholar 

  • Camerini-Otero RD, Hsieh P (1995) Homologous recombination proteins in prokaryotes and eukaryotes. Annu Rev Genet 29: 509–552

    Article  PubMed  CAS  Google Scholar 

  • Cerutti H, Johnson AM, Boynton JE, Gillham NW (1995) Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Molec Cell Biol 15: 3003–3011

    PubMed  CAS  Google Scholar 

  • Cheah KSE, Osborne DJ (1978) DNA lesions occur with loss of viability in embryos of aging rye seed. Nature (Lond) 272: 593–599

    Article  CAS  Google Scholar 

  • Cheah PY (1990) Hypotheses for the etiology of colorectal cancer. An overview. Nutr and Cancer 14: 5–13

    Article  CAS  Google Scholar 

  • Chu G (1997) Double-strand break repair. J Biol Chem 272: 24097–24100

    Article  PubMed  CAS  Google Scholar 

  • Corominas M, Mesquita C (1989) DNA damage does not induce lethal depletion of NAD during chicken spermatogenesis. In: Jacobson MK, Jacobson EL (eds) ADP-ribose transfer reactions: Mechanisms and biological significance. Springer Berlin Heidelberg New York, pp 326–329

    Google Scholar 

  • Cotter TG, Lennon SV, Glynn JG, Martin SJ (1990) Cell death via apoptosis and its relationship to growth, development and differentiation of both tumour and normal cells. Anticancer Res 10: 1153–1160

    PubMed  CAS  Google Scholar 

  • Cox MM (1993) Relating biochemistry to biology: how the recombinational repair function of RecA protein is manifested in its molecular properties. Bioessays 15: 617–623

    Article  PubMed  CAS  Google Scholar 

  • Cutler RG (1972) Transcription of reiterated DNA sequence classes throughout the life span of the mouse. Adv Gerontol Res 4: 219–321

    CAS  Google Scholar 

  • Cutler RG (1976) Nature of aging and life maintenance processes. Interdiscip Topics Gerontol 9: 83–133

    Google Scholar 

  • Demple B, Amabile-Cuevas CF (1991) Redox redux: the control of oxidative stress responses. Cell 67: 837–839

    Article  PubMed  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367

    Article  PubMed  CAS  Google Scholar 

  • Doolittle RF, Anderson KL, Feng DF (1989) Estimating the prokaryote-eukaryote divergence time from protein sequences. In: Fernholm B, Bremer K, Jornvall H (eds) The hierarchy of life, Elsevier, Amsterdam, pp 73–85

    Google Scholar 

  • Dougherty EC (1955) Comparative evolution and the origin of sexuality. Syst Zool 4: 145–190

    Article  Google Scholar 

  • Dudas SP, Arking R (1995) A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J Gerontol Biol Sci 50A: B117 - B127

    Article  CAS  Google Scholar 

  • Edington KG, Loughran OP, Berry IJ, Parkinson EK (1995) Cellular immortality: a late event in the progression of human squamous cell carcinoma of the head and neck associated with p53 alteration and a high frequency of allele loss. Mol Carcinog 13: 254–265

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinsler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumour suppression. Cell 75: 817–825

    Article  PubMed  CAS  Google Scholar 

  • Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN (1990) Oxidative damage to DNA during aging: 8-hydroxy-2’-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 87: 4533–4537

    Article  PubMed  CAS  Google Scholar 

  • Gafni A (1990) Age-related effects in enzyme metabolism and catalysis. Rev Biol Res Aging 4: 315–336

    CAS  Google Scholar 

  • Garewal H, Bernstein H, Bernstein C, Sampliner R, Payne C (1996) Reduced bile-acid induced apoptosis in „normal“ colorectal mucosa: a potential biomarker for cancer risk. Cancer Res 56: 1480–1483

    PubMed  CAS  Google Scholar 

  • Gilley D, Blackburn EH (1994) Lack of telomere shortening during senescence in Paramecium. Proc Natl Acad Sci USA 91: 1955–1958

    Article  PubMed  CAS  Google Scholar 

  • Gire V, Wynford-Thomas D (1998) Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol Cell Biol 18: 1611–1621

    PubMed  CAS  Google Scholar 

  • Govers MJAP, Termont DSML, Lapre JA, Kleibeuker JH, Vonk RJ, Van der Meer R (1996)

    Google Scholar 

  • Calcium in milk products precipitates intestinal fatty acids and secondary bile acids and thus inhibits colonic cytotoxicity in humans. Cancer Res 56:3270–3275

    Google Scholar 

  • Gupta RC, Bazemore LR, Golub EI, Radding CM (1997) Activities of human recombination protein Rad51. Proc Natl Acad Sci USA 94: 463–468

    Article  PubMed  CAS  Google Scholar 

  • Hanawalt C (1994) Transcription-coupled repair and human disease. Science 266: 1957–1958

    Article  PubMed  CAS  Google Scholar 

  • Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G (1996) Regulation of p16c°1(N2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 16: 859–867

    PubMed  CAS  Google Scholar 

  • Harper JL, White J (1974) The demography of plants. Annu Rev Ecol Syst 5: 419–463

    Article  Google Scholar 

  • Harris PV, Mazina OM, Leonhardt EA, Case RB, Boyd JB, Burtis KC (1996) Molecular cloning of a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes. Mol Cell Biol 16: 5764–5771

    PubMed  CAS  Google Scholar 

  • Harrison DE (1979) Proliferative capacity of erythropoietic stem cell lines and aging: an overview. Mech Ageing Dev 9: 409–426

    Article  PubMed  CAS  Google Scholar 

  • Hart RW, Setlow RB (1974) Correlation between deoxyribonucleic acid excision-repair and life span in a number of mammalian species. Proc Natl Acad Sci USA 71: 2169–2173

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Jones EW (1998) Genetics: principles and analysis. Sudbury, MA, USA Hay-flick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614–636

    Google Scholar 

  • Henle ES, Linn S (1997) Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 272: 19095–19098

    Article  PubMed  CAS  Google Scholar 

  • Higami Y, Shimokawa I, OkimotoT, Ikeda T (1994) An age-related increase in the basal level of DNA damage and DNA vulnerability to oxygen radicals in the individual hepatocytes of male F344 rats. Mutat Res 316: 59–67

    CAS  Google Scholar 

  • Holmes GE, Holmes NR (1986) Accumulation of DNA damages in aging Paramecium tetraurelia. Mol Gen Genet 204: 108–114

    Article  PubMed  CAS  Google Scholar 

  • Holmes GE, Bernstein C, Bernstein H (1992) Oxidative and other DNA damages as the basis of aging: a review. Mutat Res 275: 305–315

    Article  PubMed  CAS  Google Scholar 

  • Jackson AL, Loeb LA (1998) The mutation rate and cancer. Genetics 148: 1483–1490

    PubMed  CAS  Google Scholar 

  • Jansen-Durr P (1998) The making and the breaking of senescence: changes of gene expression during cellular aging and immortilalization. Exp Gerontol 33: 291–301

    Article  PubMed  CAS  Google Scholar 

  • Kunz BA, Ramachandran K, Vonarx EJ (1998) DNA sequence analysis of spontaneous mutagenesis in Saccharomyces cerevisiae. Genetics 148: 1491–1505

    PubMed  CAS  Google Scholar 

  • Lansdorp PM (1997) Lessons from mice without telomerase. J Cell Biol 139: 309–312

    Article  PubMed  CAS  Google Scholar 

  • Lehmann AR (1998) Dual functions of DNA repair genes: molecular, cellular, and clinical implications. BioEssays 20: 146–155

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362: 709–715

    Article  PubMed  CAS  Google Scholar 

  • Lithgow GJ, Kirkwood TBL (1996) Mechanisms and evolution of aging. Science 273: 80

    Article  PubMed  CAS  Google Scholar 

  • Macieira-Coelho A (1993) Contributions made by the studies of cells in vitro for understanding of the mechanisms of aging. Exp Gerontol 28: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Macieira-Coelho A (1995) Chaos in DNA partition during the last mitoses of the proliferative life span of human fibroblasts. FEBS Lett 358: 126–128

    Article  PubMed  CAS  Google Scholar 

  • Magana-Schwencke N, Henriques JAP, Chanet R, Moustacchi E (1982) The fate of 8methoxypsoralen photo-induced crosslinks in nuclear and mitochondrial yeast DNA: Comparison of wild-type and repair deficient strains. Proc Natl Acad Sci USA 79: 1722–1726

    Google Scholar 

  • Mandavilli BS, Rao KS (1996) Accumulation of DNA damage in aging neurons occurs through a mechanism other than apoptosis. J Neurochem 67: 1559–1565

    Article  PubMed  CAS  Google Scholar 

  • Massie HR, Samis HV, Baird MB (1972) The kinetics of degradation of DNA and RNA by H2O2. Biochim Biophys Acta 272: 539–548

    Article  PubMed  CAS  Google Scholar 

  • Masson M, Niedergang C, Schreiber V, Muller S, Menissier-deMurcia J, DeMurcia G (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18: 3563–3571

    PubMed  CAS  Google Scholar 

  • Mazars GR, Jat PS (1997) Expression of p24, a novel p2lwaflic`P`isa’’ related protein, correlates with measurement of the finite proliferative potential of rodent embryo fibroblasts. Proc Natl Acad Sci USA 94: 151–156

    Article  PubMed  CAS  Google Scholar 

  • Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddie SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q, Bacchetti S, Haber DA, Weinberg RA (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells during immortalization. Cell 90: 785–795

    Google Scholar 

  • Mori M, Tanaka A, Sato N (1986) Hematopoietic stem cells in elderly people. Mech Ageing Dev 37: 41–47

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Yoshimura Y, Yamamoto A, Murata K, Mori M, Yamamoto H, Matsushiro A (1993) A mouse homolog of the Escherichia coli recA and Saccharomyces cerevisiae RAD51 genes. Proc Nati Acad Sci USA 90: 6577–6580

    Article  CAS  Google Scholar 

  • Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell- derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Yu X, Shinohara A, Egelman EH (1993) Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259: 1896–1899

    Article  PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128–1130

    Article  PubMed  CAS  Google Scholar 

  • Osborne DJ (1985) Annual plants. Interdiscip Top Gerontol 21: 247–262

    Google Scholar 

  • Pacifici RE, Davies KJA (1991) Protein, lipid and DNA repair systems in oxidative stress: the free radical theory of aging revisited. Gerontology 37: 166–180

    Article  PubMed  CAS  Google Scholar 

  • Pandolfi PP, Sonati F, Rivi R, Mason P, Grosveld F, Luzzatto L (1995) Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispendable for pentose synthesis but essential for defense against oxidative stress. EMBO J 14: 5209–5215

    Google Scholar 

  • Park MS (1995) Expression of human RAD52 confers resistance to ionizing radiation in mammalian cells. J Biol Chem 270: 15467–15470

    PubMed  CAS  Google Scholar 

  • Parkes TL, Elia AJ, Dickenson D, Hilliker AJ, Phillips JB, Boulianne GL (1998) Extension of Drosophila lifespan by overexpression of human DOD1 in motor neurons. Nature Genetics 19: 171–174

    Article  PubMed  CAS  Google Scholar 

  • Payne CM, Bernstein C, Bernstein H (1995a) Apoptosis overview emphasizing the role of oxidative stress, DNA damage and signal transduction pathways. Leukemia and Lymphoma 19: 43–93

    Google Scholar 

  • Payne CM, Bernstein H, Bernstein C, Garewal H (1995b) Role of apoptosis in biology and pathology: Resistance to apoptosis in colon carcinogenesis. Ultrastruct Pathol 19: 221–248

    Google Scholar 

  • Payne CM, Crowley C, Washo-Stultz D, Briehl M, Bernstein H, Bernstein C, Beard S, Holubec H, Warneke J (1998) The stress-response proteins poly(ADP-ribose) polymerase and NF-xB protect against bile salt-induced apoptosis. Cell Death Differ 5: 623–636

    Article  PubMed  CAS  Google Scholar 

  • Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H., Reed JC, Perucho M (1997) Somatic frame-shift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275: 967–969

    Article  PubMed  CAS  Google Scholar 

  • Resnick MA, Martin P (1976) The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol Gen Genet 143: 119–129

    Article  PubMed  CAS  Google Scholar 

  • Rotman G, Shiloh Y (1997) Ataxia-telangiectasia: is ATM a sensor of oxidative damage and stress? BioEssays 19: 911–917

    Article  PubMed  CAS  Google Scholar 

  • Sancar A (1994) Mechanisms of DNA excision repair. Science 266: 1954–1956

    Article  PubMed  CAS  Google Scholar 

  • Satoh MS, Jones CJ, Wood RD, Lindahl T (1993) DNA excision-repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free radical-induced base lesions. Proc Natl Acad Sci USA 90: 6335–6339

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Bauer MKA, Vogt M, Wesselborg S (1997) Oxidative stress and signal transduction. Int J Vitam Nutr Res 67: 336–342

    PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9: 1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Shinohara A, Ogawa H, MatsudaY, Ushio N, Ikeo K, Ogawa T (1993) Cloning of human, mouseand fission yeast recombination genes homologous to RAD51 and recA. Nat Genet 4: 239–243

    CAS  Google Scholar 

  • Sladek FM, Munn MM, Rupp WD, Howard-Flanders P (1989) In vitro repair of psoralen-DNA cross-links by RecA, UvrABC, and the 5’-exonuclease of DNA polymerase I. J Biol Chem 264: 6755–6765

    PubMed  CAS  Google Scholar 

  • Smith-Sonneborn J (1979) DNA repair and longevity assurance in Paramecium tetraurelia. Science 203: 1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Weindurch R (1996) Oxidative stress, caloric restriction, and aging. Science 273: 59–63

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Agarwal A, Agarwal S, Orr WC (1995) Simultaneous overexpression of copper and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem 270: 15671–15674

    Article  PubMed  CAS  Google Scholar 

  • Stadler J, Stern HS, Yeung KS, McGuire V, Furrer R, Marcon N, Bruce WR (1988) Effect of high fat consumption on cell proliferation activity of colorectal mucosa and on soluble fecal bile acids. Gut 29: 1326–1331

    Article  PubMed  CAS  Google Scholar 

  • Stahl FW (1979) Genetic recombination: thinking about it in phage and fungi. Freeman, San Francisco Stein GH, Beeson M, Gordon L (1990) Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249: 666–669

    Google Scholar 

  • Story RM, Bishop DK, Kleckner N, Steitz TA (1993) Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science 259: 1892–1896

    Article  PubMed  CAS  Google Scholar 

  • Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265: 1241–1243

    Article  PubMed  CAS  Google Scholar 

  • Terasawa M, Shinohara A, Hotta Y, Ogawa H, Ogawa T (1995) Localization of RecA-like recom-bination protein on chromosomes of the lily at various meiotic stages. Genes Dev 9: 925–934

    Article  PubMed  CAS  Google Scholar 

  • Wakayama T, Perry ACF, Zucotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394: 369–374

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Patel U, Ghosh L, Banerjee S (1992) DNA polymerase 13 mutations in human colorectal cancer. Cancer Res 52: 4824–4827

    PubMed  CAS  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81: 323–330

    Article  PubMed  CAS  Google Scholar 

  • Weirich-Schwaiger H, Weirich HG, Gruber B, Schweiger M, Hirsch-Kauffmann M (1994) Correlation between senescence and DNA repair in cells from young and old individuals and in premature aging syndromes. Mutat Res 316: 37–48

    Article  PubMed  CAS  Google Scholar 

  • White E (1996) Life, death, and the pursuit of apoptosis. Genes Dev 10: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–813

    Article  PubMed  CAS  Google Scholar 

  • Wynford-Thomas D (1996) p53: guardian of cellular senescence. J Pathol 180:118–121

    Google Scholar 

  • Yaagoubi AE, Mariethoz E, Jacquier-Sarlin MR, Polla BS (1998) Redox regulation of heat shock protein expression and protective effects against oxidative stress. In: Montagnier L, Olivier R, Pasqwer C (eds) Oxidative stress in cancer, AIDS and neurodegenerative diseases. Marcel Dekker, New York, pp 113–126

    Google Scholar 

  • Zglinicki TV, Saretzki G, Docke W, Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220: 186–193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bernstein, C., Bernstein, H., Payne, C. (1999). Cell Immortality: Maintenance of Cell Division Potential. In: Macieira-Coelho, A. (eds) Cell Immortalization. Progress in Molecular and Subcellular Biology, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06227-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06227-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08491-1

  • Online ISBN: 978-3-662-06227-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics