Advertisement

Vibrational Spectroscopy with Neutrons

  • H. Jobic
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 6)

Abstract

Several neutron techniques are being used to study catalytic systems [I]. We will limit ourselves here to inelastic neutron scattering (INS) which is a method of great potential interest to study vibrational modes of catalysts and of adsorbed molecules. INS is one of the numerous vibrational techniques available for a better understanding of surface phenomena. Each technique has its particular advantages for a given system in terms of spectral domain, resolution, sensitivity and experimental conditions. For example infrared spectroscopy is a very efficient method to detect adsorbed CO (see the contribution by Maugé et al.) but it is much less sensitive to adsorbed hydrogen.

Keywords

Electron Energy Loss Spectroscopy Vibrational Spectroscopy Inelastic Neutron Scatter Raney Nickel Rutherford Appleton Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jobic H.. in Catalyst Characterization, Eds. B. Imelik and J. C. Védrine ( Plenum Press, New York 1994 ) pp. 347–375.Google Scholar
  2. [2]
    Special issue of Spectrochimica Acta 48A (1992). Guest Editors. J. Eckert and G. J. Kearley.Google Scholar
  3. [3]
    Jobic H. and Renouprez A., J. Chem. Soc., Faraday Trans. 1 80 (1984) 19911997.Google Scholar
  4. [4]
    Jobic H.. Clugnet G. and Renouprez A., J. Electron Spectrosc. Rel. Phenom. 45 (1987) 281–290.CrossRefGoogle Scholar
  5. [5]
    Hochard F., Jobic H., Massardier J. and Renouprez A.. J. Mol. Catal. A 95 (1995) 165–172.CrossRefGoogle Scholar
  6. [6]
    Richardson J. T. and Cale T. S., J. Catal. 102 (1986) 419–432.CrossRefGoogle Scholar
  7. [7]
    Jobic H., Clugnet G.. Lacroix M.. Yuan S., Mirodatos C. and Breysse M.. J. Am. Chem. Soc. 115 (1993) 3654–3657.CrossRefGoogle Scholar
  8. [8]
    Wright C. J., Fraser D., Moyes R. B. and Wells P. B., Appl. Catal. 1 (1981) 4958.Google Scholar
  9. [9]
    Sundberg P., Moyes R. B. and Tomkinson J., Bull. Soc. Chim. Belg. 100 (1991) 967–976.CrossRefGoogle Scholar
  10. [10]
    Jacobs W. P. J. H., van Wolput J. H. M. C., van Santen R. A. and Jobic H.. Zeolites 14 (1994) 117–125.CrossRefGoogle Scholar
  11. [11]
    Czjzek M., Jobic H., Fitch A. N. and Vogt T., J. Phys. Chem. 96 (1992) 15351540.Google Scholar
  12. [12]
    Jobic H., J. Catal. 131 (1991) 289–293.CrossRefGoogle Scholar
  13. [13]
    Jacobs W. P. J. H., Jobic H., van Wolput J. H. M. C. and van Santen R. A.. Zeolites 12 (1992) 315–319.CrossRefGoogle Scholar
  14. [14]
    Jobic H., Tuel A.. Krossner M. and Sauer J. J. Phys. Chem. 100 december 1996Google Scholar
  15. [15]
    Krossner, M. and Sauer J.. J. Phys. Chem. 100 (1996) 6199–621].Google Scholar
  16. [16]
    Kearley, G. J., J. Chem. Soc., Faraday Trans. 2 82 (1986) 41–48.CrossRefGoogle Scholar
  17. [17]
    Jobic H. and Fitch A. N., Progress in Zeolite and Microporous Materials, Studies in Surface Science and Catalysis, Vol. 105. H. Chon, S. K Ihm and Y. S. Uh, Eds. (Elsevier, 1997 ) pp. 559–566.Google Scholar
  18. [18]
    La Lau C. and Snyder R. G., Spectrochim. Acta 27A (1971) 2073–2088.Google Scholar
  19. [19]
    Jobic H., Tomkinson J., Candy J.P., Fouilloux P. and Renouprez A. Surface Science 95 (1980) 496–510.ADSCrossRefGoogle Scholar
  20. [20]
    Jobic H. and Lauter H. J., J Chem. Phys. 88 (1988) 5450–5456.ADSGoogle Scholar
  21. [21]
    Penfold J. and Tomkinson J., Rutherford Appleton Laboratory Report RAL-86019 (1986).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • H. Jobic
    • 1
  1. 1.Institut de Recherches sur la CatalyseCNRSVilleurbanneFrance

Personalised recommendations