Regular Variational Integrals

  • Mariano Giaquinta
  • Giuseppe Modica
  • Jiří Souček
Part of the Ergebnisse der Mathematik und ihrer Grenzgebiete / 3. Folge. A Series of Modern Surveys in Mathematics book series (MATHE3, volume 38)


In this chapter we deal with variational integrals
$$F(u,\Omega ): = \int\limits_\Omega {f(x,u(x),Du(x))dx} $$
defined on smooth maps u:Ω ⊂ ℝ n → ℝ N , which are regular, i.e., such that
$$F({\text{u}},\Omega ) \geqslant v{H^n}({g_u}_{,\Omega })v > 0$$
for all admissible u. Our goal is to find weak minimizers in suitable classes by the direct methods of calculus of variations.


Manifold Lime Hull Cavitation Radon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Mariano Giaquinta
    • 1
  • Giuseppe Modica
    • 2
  • Jiří Souček
    • 3
  1. 1.Dipartimento di MatematicaUniversità di PisaPisaItaly
  2. 2.Dipartimento di Matematica ApplicataUniversità di FirenzeFirenzeItaly
  3. 3.Faculty of Mathematics and PhysicsCharles UniversityPraha 8Čzech Republic

Personalised recommendations