Skip to main content

Lipid-Lowering Responses Modified by Genetic Variation

  • Chapter
Cardiovascular Pharmacogenetics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 160))

Abstract

Elevated cholesterol and other dyslipidaemias are major risk factors for atherosclerotic cardiovascular disease—the major cause of death in North America and Europe. Correction of dyslipidaemia with diet or lipid-lowering agents has been shown to reduce the risk of future coronary events. However, the response to diet or lipid-lowering drugs is not uniform within any population. Even among carefully selected patients in clinical trials, individual responses to a lipid-modifying intervention vary greatly. On the one hand, factors such as gender, age, concomitant disease and concomitant medication may modify the pharmacokinetics or pharmacodynamics of lipid-lowering therapy. On the other hand, genetic factors are also important. Polymorphisms in genes regulating the metabolism of lipoproteins (e.g. apolipoprotein E, lipoprotein lipase, cholesteryl ester transfer protein) are associated with differences in plasma lipoprotein concentrations and can explain a substantial fraction of their variance in the general population, as demonstrated in measurements of low-density lipoprotein (LDL) or high-density lipoprotein (HDL). With the widespread availability of molecular genetic testing, the focus has shifted to the study of genetic determinants of drug response and their role in optimizing the choice of agent with regard to efficacy and tolerability. At present, despite several positive, but in general isolated examples, the overall impact of such gene variants in predicting individual response to a lipid-lowering intervention still needs clarification in well-designed confirmatory studies. Advances in pharmacogenomics will help to deepen our understanding of lipid and lipoprotein metabolism and the consideration that needs to be give to genetic factors in prescribing lipid-lowering therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalto-Setala K, Kontula K, Manttari M et al (1991) DNA polymorphisms of apolipoprotein B and AI/CIII genes and response to gemfibrozil treatment. Clin Pharmacol Ther 50: 208–214

    Article  PubMed  Google Scholar 

  • Agellon LB, Quinet EM, Gillette TG et al (1990)Organization of the human cholesteryl ester transfer protein gene. Biochemistry 29: 1372–1376

    Google Scholar 

  • Agerholm-Larsen B, Nordestgaard BG, Steffensen R et al (2000a) Elevated HDL cholesterol is a risk factor for ischemic heart disease in white women when caused by a common mutation in the cholesteryl ester transfer protein gene. Circulation 101: 1907–1912

    Google Scholar 

  • Agerholm-Larsen B, Tybjaerg-Hansen A, Schnohr P et al (2000b) Common cholesteryl ester transfer protein mutations, decreased HDL cholesterol, and possible decreased risk of ischemic heart disease: The Copenhagen City Heart Study. Circulation 102: 2197–2203

    Google Scholar 

  • Aguilar-Salinas SA, Barnett H, Schonfeld G (1998) Metabolic modes of action of statins in the hyperlipoproteinemias. Atherosclerosis 141: 203–207

    Article  PubMed  CAS  Google Scholar 

  • Altman RB, Klein TE (2002) Challenges for biomedical informatics and pharmacogenomics. Annu Rev Pharmacol Toxicol 42: 113–133

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (2000) Pharmacogenomics. Nature Biotechnol 18[Suppl.]:IT40–IT42.

    Google Scholar 

  • Auboeuf D, Rieusset J, Fajas L et al (1997) Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 46: 1319–27

    Article  PubMed  CAS  Google Scholar 

  • Auwerx J (1999) PPARy, the ultimately thrifty gene. Diabetologia 42:1033–1049 Axelrod R, Cohen MD ( 2000 ) Harnessing complexity. New York: Basic Books

    Google Scholar 

  • Bailey DS, Bondar A, Furness LM (1998) Pharmacogenomics–its not just pharmacogenetics. Curr Opin Biotechnol 9: 595–601

    Article  PubMed  CAS  Google Scholar 

  • Ballantyne CM, Herd JA, Stein EA et al (2000) Apolipoprotein E genotypes and response of plasma lipids and progression-regression of coronary atherosclerosis to lipid-lowering drug therapyJ Am Coll Cardiol 36: 1572–8

    CAS  Google Scholar 

  • Barbier O, Torra IP, Duguay Y et al (2002) Pleiotropic actions of peroxisome proliferatoractivated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 22: 717–726

    Article  PubMed  CAS  Google Scholar 

  • Beaird SL (2000) HMG-CoA reductase inhibitors: asssessing differences in drug interactions and safety profiles. J Am Pharm Assoc 40: 637–644

    CAS  Google Scholar 

  • Bennett MK, Lopez JM, Sanchez HB et al (1995) Sterol regulation of fatty acid synthase promoter. Coordinate feedback regulation of two major lipid pathways. J Biol Chem 270: 25578–25583

    Google Scholar 

  • Bentzen J, Jorgensen T, Fenger M (2002) The effect of six polymorphisms in the apolipoprotein B gene on parameters of lipid metabolism in a Danish population. Clin Genet 61: 126–134

    Article  PubMed  CAS  Google Scholar 

  • Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53: 409–435

    Google Scholar 

  • Berk-Planken IIL, Bootsma AH, Hoogerbrugge N et al, on behalf of the DALI study group (2003) Atorvastatin dose-dependently decreases hepatic lipase activity in type 2 diabetes -effect of sex and the LIPC promoter variant. Diabetes Care 26: 427–432

    Google Scholar 

  • Bottorff M, Hansten P (2000) Long-term safety of hepatic hydoxylmethyl glutaryl coenzyme A reductase inhibitors. Arch Intern Med 160: 2273–2280

    Article  PubMed  CAS  Google Scholar 

  • Bouly M, Masson D, Gross B et al (2001) Induction of the phospholipid transfer protein gene accounts for the high density lipoprotein enlargement in mice treated with fenofibrate. J Biol Chem 276: 25841–25847

    Article  PubMed  CAS  Google Scholar 

  • Bossé Y, Pascot A, Dumont Met al (2002) Influences of the PPARy L162 V polymorphism on plasma HDL2 cholesterol response of abdoiminally obese men treated with gemfibrozil. Genet Med 4: 311–315

    Article  PubMed  Google Scholar 

  • Brisson D, Ledoux D, Bossé Yet al (2002) Effect of apolipoprotein E, peroxisome proliferator-activated receptor alpha and lipoprotein lipase gene mutations on the ability of fenofibrate to improve lipid profiles and reach clinical guideline targets among hypertriglyceridemic patients. Pharmacogenetics 12: 313–320

    Article  PubMed  CAS  Google Scholar 

  • Brorholt-Petersen JU, Jensen HK, Raungaard B et al (2001) LDL-receptor gene mutations and the hypocholesterolemic response to statin therapy. Clin Genet 59: 397–405

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331–340

    Article  PubMed  CAS  Google Scholar 

  • Brown WV (2001) What are the priorities for managing cholesterol effectively. Am J Cardiol. 88 ( Suppl. F): 21F–24F

    Google Scholar 

  • Bucher HC, Griffith LE, Guyatt HG (1999) Systematic review on the risk and benefit of different cholesterol-lowering interventions Arterioscler Thromb Vasc Biol 19: 187–195

    Article  CAS  Google Scholar 

  • Cantin B, Lamarche B, Després JP et al (2002) Does correction of the friedewald formula using lipoprotein(a) change our estimation of ischemic heart disease risk? The Quebec Cardiovascular Study. Atherosclerosis 163: 261–267

    Article  PubMed  CAS  Google Scholar 

  • Cardon LR, Idury RM, Harris TJR et al (2000) Testing drug response in the presence of genetic information: sampling issues for clinical trials. Pharmacogenetics 10: 503–510

    Article  PubMed  CAS  Google Scholar 

  • Carson PE, Flanagan CL, Ickes CE et al (1956) Enzymatic deficiency in primaquine sensitive erythrocytes. Science 124: 484–485

    Article  PubMed  CAS  Google Scholar 

  • Caslake MJ, Packard CJ, Gaw A et al (1993) Fenofibrate and LDL metabolic heterogeneity in hypercholesterolemia. Arterioscler Thromb 13: 702–711

    Article  PubMed  CAS  Google Scholar 

  • Chaves FJ, Real JT, Garcia-Garcia AB et al (2001) Genetic diagnosis of familial hypercholesterolemia in a South European outbreed population: influence of low-density lipoprotein (LDL) receptor gene mutations on treatment response to simvastatin in total, LDL, and high-density lipoprotein cholesterol. J Clin Endocrinol Metab 86: 49264932

    Google Scholar 

  • Chinetti G, Lestavel S, Bocher V et al (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7: 53–58

    Article  PubMed  CAS  Google Scholar 

  • Cohen JC (1999) Contribution of cholesterol 7-alpha-hydroxylase to the regulation of lipoprotein metabolism. Curr Opin Lipidol 10: 303–307

    Article  PubMed  CAS  Google Scholar 

  • Corton JC, Anderson SP, Stauber A (2000) Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol 40: 491–518

    Article  PubMed  CAS  Google Scholar 

  • Couture P, Brun LD, Szots F et al (1998) Association of specific LDL receptor gene mutations with differential plasma lipoprotein response to simvastatin in young French Canadians with heterozygous familialhypercholesterolemia. Arterioscler Thromb Vasc Biol 18: 1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Couture P, Otvos JD, Cupples LA et al (1999) Association of the A-204C polymorphism in the cholesterol 7alpha-hydroxylase gene with variations in plasma low density lipoprotein cholesterol levels in the Framingham Offspring Study. J Lipid Res 40: 18831889

    Google Scholar 

  • Couture P, Otvos JD, Cupples LA et al (2000) Association of the C-514T polymorphism in the hepatic lipase gene with variations in lipoprotein subclass profiles—the Framingham Offspring study. Arterioscler Thromb Vasc Biol 20: 815–822

    Article  PubMed  CAS  Google Scholar 

  • Davidson M, McKenney J, Stein E, Schrott M, Bakker-Arkema R, Fayyad R, Black D, for the Atovvastatin Study Group I (1997) Comparison of one-year efficacy and safety of atovvastatin versus lovastatin in primary hypercholesterolemia. Am J Cardiol 70: 1475–1481

    Google Scholar 

  • Davidson MH (2001) Introduction: utilization of surrogate markers of atherosclerosis for the clinical development of pharmaceutical agents. Am J Cardiol 87 [Suppl A]: 1A–7A

    Article  PubMed  CAS  Google Scholar 

  • Diabetes Atherosclerosis Intervention Study Investigators (2001) Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 357: 905–910

    Article  Google Scholar 

  • Desager JP, Horsmans Y, Vandenplas C et al (1996) Pharmacodynamic activity of lipoprotein lipase and hepatic lipase, and pharmacokinetic parameters measured in normolipididaemic subjects receiving ciprofibrate (100 or 200 mg/day) or micronised fenofibrate (200 mg/day) therapy for 23 days. Atherosclerosis 124 (Suppl.): S65–S73

    Article  PubMed  CAS  Google Scholar 

  • Després JP (2001) Increasing high-density lipoprotein cholesterol: an update of fenofibrate. Am J Cardiol 88 (Suppl. N):30N-36 N

    Google Scholar 

  • Destenaves B, Thomas F (2000) New advances in pharmacogenomics. Curr Opin Chem Biol 4: 440–444

    Article  PubMed  CAS  Google Scholar 

  • Dullaart RP, Hoogenberg K, Riemens SC et al (1997) Cholesteryl ester transfer protein gene polymorphism is a determinant of HDL cholesterol and of the lipoprotein response to a lipid-lowering diet in type 1 diabetes. Diabetes 46: 2082–2087

    Article  PubMed  CAS  Google Scholar 

  • Ericsson CG, Hamsten A, Nilsson J et al (1996) Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 347: 849–853

    Article  PubMed  CAS  Google Scholar 

  • Evans WE, Johnson JA (2001) Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu Rev Genomics Hum Genet 2: 9–39

    Article  PubMed  CAS  Google Scholar 

  • Fan YM, Laaksonen R, Janatuinen T et al (2001) Effects of pravastatin therapy on serum lipids and coronary reactivity are not associated with SREBP cleavage-activating protein polymorphism in healthy young men. Clin Genet 60: 319–321

    Article  PubMed  CAS  Google Scholar 

  • Feher MD, Webb JC, Patel DD et al (1993) Cholesterol-lowering drug therapy in a patient with receptor-negative homozygous familial hypercholesterolaemia. Atherosclerosis 103: 171–180

    Article  PubMed  CAS  Google Scholar 

  • Fischer E, Scharnagl H, Hoffmann MM et al (1999) Mutations in the Apolipoprotein (apo) B-100 Receptor-binding region: Detection of apo B-100 (Arg3500->Trp) Associated with Two New Haplotypes and Evidence That apo B-100 (G1u3405->G1n) Diminishes Receptor-mediated Uptake of LDL. Clin Chem 45: 1026–1038

    Google Scholar 

  • Flavell DM, Pineda Torra I, Jamshidi Y et al (2000) Variation in the PPARalpha gene is associated with altered function in vitro and plasma lipid concentrations in Type 2 diabetic subjects. Diabetologia 43: 673–680

    Article  PubMed  CAS  Google Scholar 

  • Freeman DJ, Wilson V, McMahon AD et al (2000)A polymorphism of the Cholesteryl Ester Transfer Protein (CETP) gene predicts cardiovascular events in the West of Scotland Coronary Prevention Study (WOSCOPS). Atherosclerosis 151: 91

    Google Scholar 

  • Frenette PS (2001) Locking a leukocyte integrin with statins. N Engl J Med 345: 1419–1421

    Google Scholar 

  • Frick MH, Syvänne M, Nieminen MS et al, for the Lopid Coronary Angiohraphy Trial (LOCAT) (1997) Prevention of the angiographic progression of coronary and veingraft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Circulation 96: 2137–2143

    Google Scholar 

  • Friedlander Y, Leitersdorf E, Vecsler R et al (2000) The contribution of candidate genes to the response of plasma lipids and lipoproteins to dietary challenge. Atherosclerosis 152: 239–248

    Article  PubMed  CAS  Google Scholar 

  • Fruchart JC, Brewer HB, Leitersdorf E (1998) Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Am J Cardiol 81: 912–917

    Google Scholar 

  • Fruchart JC, Duriez P, Staels B (1999) Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 10: 245–257

    Article  PubMed  CAS  Google Scholar 

  • Fruchart JC (2001) Peroxisome proliferator-activated receptor-a activation and high-density lipoprotein metabolism. Am J Cardiol 88 (Suppl. N):24N-29 N

    Google Scholar 

  • Garcia-Odin AL, Civeira F, Aristegui R et al, on behalf of the ATOMIX Study Group (2002) Allelic polymorphism 491A/T in apo E gene modulates the lipid-lowering response in combined hyperlipidemia treatment. Eur J Clin Invest 32: 421–428

    Google Scholar 

  • Gerdes LU, Gerdes C, Kervinen K et al (2000) The apolipoprotein epsilon4 allele determines prognosis and the effect on prognosis of simvastatin in survivors of myocardial infarction: a substudy of the Scandinavian simvastatin survival study. Circulation 101: 1366–1371

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg HN (1998) Effects of statins on triglyceride metabolism. Am J Cardiol 81[Suppl 4AI: 32–35

    Google Scholar 

  • Gonbert S, Malinsky S, Sposito AC et al (2002) Atorvastatin lowers lipoprotein(a) but not apolipoprotein(a) fragment levels in hypercholesterolemic subjects at high cardiovascular risk. Atherosclerosis 164: 305–311

    Article  PubMed  CAS  Google Scholar 

  • Goodwin B, Redinbo MR, Kliewer SA (2002) Regulation of CYP3A gene transcription by the pregnane X receptor. Annu Rev Pharmacol Toxicol 42: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Groenemeijer B, Hallman MD, Reymer PWA et al, on behalf of the REGRESS study group (1997) Genetic variant showing a positive interaction with ß-blocking agents with a beneficial influence on lipoprotein lipase activity, HDL cholesterol, and triglyceride levels in coronary artery disease patients. Circulation 95: 2628–2635

    Google Scholar 

  • Grundy SM, Ahrens EH, Jr., Salen G (1971) Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism. J Lab Clin Med 78: 94–121

    PubMed  CAS  Google Scholar 

  • Gudnason V, Kakko S, Nicaud Vet al (1999) Cholesteryl ester transfer protein gene effect on CETP activity and plasma high-density lipoprotein in European populations. The EARS Group. Eur J Clin Invest 29: 116–128

    Google Scholar 

  • Guerra R, Wang J, Grundy SM et al (1997) A hepatic lipase ( LIPC) allele associated with high plasma concentrations of high density lipoprotein cholesterol. Proc Natl Acad Sci U S A 94: 4532–4537

    Google Scholar 

  • Guérin M, Bruckert E, Dolphin PJ et al (1996) Fenofibrate reduces plasma cholesteryl ester transfer from HDL to VLDL and normalizes the atherogenic, dense LDL profile in combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 16: 763–772

    Article  PubMed  Google Scholar 

  • Gylling H, Miettinen TA (1992) Cholesterol absorption and synthesis related to low density lipoprotein metabolism during varying cholesterol intake in men with different apoE phenotypes. J Lipid Res 33: 1361–1371

    PubMed  CAS  Google Scholar 

  • Hayashi K, Kurushima H, Kuga Yet al (1998) Comparison of the effect of bezafibrate on improvement of atherogenic lipoproteins in Japanese familial combined hyperlipidemic patients with or without impaired glucose tolerance. Cardiovasc Drugs Ther 12: 3–12

    Article  PubMed  CAS  Google Scholar 

  • Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebocontrolled. Lancet 360: 7–22

    Article  Google Scholar 

  • Heath KE, Gudnason V, Humphries SE et al (1999) The type of mutation in the low density lipoprotein receptor gene influences the cholesterol-lowering response of the HMG-CoA reductase inhibitor simvastatin in patients with heterozygous familial hypercholesterolaemia. Atherosclerosis 143: 41–54

    Article  PubMed  CAS  Google Scholar 

  • Heath KE, Gahan M, Whittall RA et al (2001) Low-density lipoprotein receptor gene (LDLR) world-wide website in familial hypercholesterolaemia: update, new features and mutation analysis. Atherosclerosis 154: 243–246

    Article  PubMed  CAS  Google Scholar 

  • Herman RJ. Drug interactions and the statins (1999) CMAJ 161: 1281–6

    CAS  Google Scholar 

  • Hobbs HH, White AL (1999) Lipoprotein(a): intrigues and insights. Curr Opin Lipidol 10: 225–236

    Article  PubMed  CAS  Google Scholar 

  • Hodis H (1999) Triglyceride-rich lipoprotein remnant particles and risk of atherosclerosis. Circulation 99: 2852–2854

    Article  PubMed  CAS  Google Scholar 

  • HoogerbruggeN, Jansen H (1999) Atorvastatin increases low-density lipoprotein size and enhances high-density lipoprotein cholesterol concentration in male, but not in female patients with familial hypercholesterolemia. Atherosclerosis 146: 167–174

    Article  Google Scholar 

  • Humphries SE, Luong LA, Talmud PJ et al (1998) The 5A/6A polymorphism in the promoter of the stromelysin-1 (MMP-3) gene predicts progression of angiographically determined coronary artery disease in men in the LOCAT gemfibrozil study. Lopid Coronary Angiography Trial. Atherosclerosis 139: 49–56

    Google Scholar 

  • Humphries SE, Nicaud V, Margalef J et al (1998a) Lipoprotein lipase gene variation is associated with a paternal history of premature coronary artery disease and fasting and postprandial plasma triglycerides: the European Atherosclerosis Research Study ( EARS ). Arterioscler Thromb Vasc Biol 18: 526–34

    Google Scholar 

  • Ichihara K, Satoh K (2002) Disparity between angiographic regression and clincial event rates with hydrophobic statins. Lancet 359: 2195–2198

    Article  PubMed  Google Scholar 

  • Ingelman-Sundberg M (2001) Pharmacogeneitcs: an opportunity for a safer and more efficient pharmacotherapy. J Intern Med 250: 186–200

    Article  PubMed  CAS  Google Scholar 

  • Iwaki K, Nakajima T, Ota N et al (1999) A common 11e796Val polymorphism of the hu- man SREBP cleavage-activating protein ( SCAP) gene. J Hum Genet 44: 421–422

    Google Scholar 

  • Jukema WJ, van Boven AJ, Groenemeijer B et al, on behalf of the REGRESS study group (1996) The ASP9ASN mutation in the lipoprotein lipase gene is associated with increased progression of coronary atherosclerosis. Circulation 94: 1913–1918

    Google Scholar 

  • Juo SH, Wyszynski DF, Beaty TH et al (1999) Mild association between the A/G polymorphism in the promoter of the apolipoprotein A-I gene and apolipoprotein A-I levels: a meta-analysis. Am J Med Genet 82: 235–241

    Article  PubMed  CAS  Google Scholar 

  • Kafatos FC (2001) The future of genomics. Mol Aspect Med 22: 101–111

    Article  CAS  Google Scholar 

  • Kalow W (1956) Familial incidence of low pseudocholinesterase level. Lancet 211: 576577

    Google Scholar 

  • Kalow W (2001) Pharmacogenetics, pharmacogenomics, and pharmacobiology. Clin Pharmacol Ther 70: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Karayan L, Qiu S, Betard C et al (1994) Response to HMG CoA reductase inhibitors in heterozygous familial hypercholesterolemia due to the 10-kb deletion (“French Canadian mutation”) of the LDL receptor gene. Arterioscler Thromb 14: 1258–1263

    Article  PubMed  CAS  Google Scholar 

  • Kesaniemi YA, Ehnholm C, Miettinen TA (1987) Intestinal cholesterol absorption efficiency in man is related to apoprotein E phenotype. J Clin Invest 80: 578–581

    Article  CAS  Google Scholar 

  • Klausen IC, Gerdes LU, Meinertz H et al (1993) Apolipoprotein(a) polymorphism predicts the increase of Lp(a) by pravastatin in patients with familial hypercholesterolaemia treated with bile acid sequestration. Eur J Clin Invest 23: 240–5

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch H, Bauerfeind A, Krähenbühl C et al (2002) Common haplotypes in five genes in.uence genetic variance of I.DL and HDL cholesterol in the general population. Hum Mol Genet 11: 1477–1485

    Article  PubMed  CAS  Google Scholar 

  • Knopp RH (1999) Drug treatment of lipid disorders. N Engl J Med 341: 498–511

    Article  PubMed  CAS  Google Scholar 

  • Korhonen T, Hannuksela ML, Seppanen S et al (1999) The effect of the apolipoprotein E phenotype on cholesteryl ester transfer protein activity, plasma lipids and apolipoprotein A I levels in hypercholesterolaemic patients on colestipol and lovastatin treatment. Eur J Clin Pharmacol 54: 903–910

    CAS  Google Scholar 

  • Kuivenhoven JA, Jukema JW, Zwinderman AH et al (1998) The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. N Engl J Med 338: 86–93

    Article  PubMed  CAS  Google Scholar 

  • Lamb RG, Koch JC, Bush SR (1993) An enzymatic explanation of the differential effects of oleate and gemfibrozil on cultured hepatocyte triacylglycerol and phosphatidylcholine biosynthesis and secretion. Biochim Biophys Acta 1165: 299–305

    Article  PubMed  CAS  Google Scholar 

  • LaRosa JC, He J, Vupputuri S (1999) Effect of statins on risk of coronary disease—a meta-analysis of randomized controlled trials. JAMA 282: 2340–2346

    CAS  Google Scholar 

  • Larson I, Hoffmann MM, Ordovas JM et al (1999) The lipoprotein lipase HindIIl polymorphism: association with total cholesterol and LDL cholesterol, but not with HDL and triglycerides in 342 females. Clin Chem 45: 7; 963–968

    PubMed  CAS  Google Scholar 

  • Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients. A meta-analysis of prospective studies. JAMA 279: 1200–1205

    Google Scholar 

  • Leitersdorf E, Eisenberg S, Eliav O et al (1993) Genetic determinants of responsiveness to the HMG-CoA reductase inhibitor fluvastatin in patients with molecularly defined heterozygous familial hypercholesterolemia [In Fredrickson DS. Dyslipoproteinemia–from phenotypes to genotypeschrw(133) a remarkable quarter century]. Circulation 87 (Suppl III): 35–44

    Google Scholar 

  • Linder MW, Prough RA, Valdes R, Jr (1997) Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin Chem 43: 254–266

    PubMed  CAS  Google Scholar 

  • Lopez JM, Bennett MK, Sanchez HB et al (1996) Sterol regulation of acetyl coenzyme A carboxylase: a mechanism for coordinate control of cellular lipid. Proc Natl Acad Sci U S A 93: 1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Lu AY (1998) Drug-metabolism research challenges in the new millenium: individual variability in drug therapy and drug safety. Drug Metab Dispos 26: 1217–1222

    PubMed  CAS  Google Scholar 

  • Lussier-Cacan S, Bolduc A, Xhignesse M et al (2002) Impact of alcohol intake on measures of lipid metabolism depends on context defined by gender, body mass index, cigarette smoking, and apolipoprotein E genotype. Arterioscler Thromb Vasc Biol 22: 824–831

    Article  CAS  Google Scholar 

  • de Maat MP, Jukema JW, Ye S et al (1999) Effect of the stromelysin-1 promoter on efficacy of pravastatin in coronary atherosclerosis and restenosis. Am J Cardiol 83: 852–856

    Article  PubMed  Google Scholar 

  • Maerz W, Grutzmacher P, Paul D et al (1994) Effects of lovastatin (20–80 mg daily) on lipoprotein fractions in patients with severe primary hypercholesterolemia. Int J Clin Pharmacol Ther 32: 92–97

    Google Scholar 

  • März W, Baumstark M, Scharnagl H et al (1993) Accumulation of `small dense’ low density lipoproteins in a homozygous patient with familial defective apolipoprotein B-100 results from heterogenous interaction of LDL subfractions with the LDL receptor. J Clin Invest 92: 2922–2933

    Article  PubMed  Google Scholar 

  • März W, Winkelmann BR (2002) HMG CoA reductase inhibition in the treatment of atherosclerosis: effects beyond lipid lowering. J Kardiol 9: 284–294

    Google Scholar 

  • Mahley RW, Huang Y (1999) Apolipoprotein E: from atherosclerosis to Alzheimer’s disease and beyond. Curr Opin Lipidol 10: 207–217

    Article  PubMed  CAS  Google Scholar 

  • Mahley RW, Rall SC (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 1: 507–537

    Article  PubMed  CAS  Google Scholar 

  • Maitland-van der Zee AH, Klungel OH, Stricker BHC et al (2002) Genetic polymorphisms: importance for response to HMG-CoA reductase inhibitors. Atherosclerosis 163: 213–222

    Article  Google Scholar 

  • Manttari M, Koskinen P, Ehnholm C et al (1991) Apolipoprotein E polymorphism influences the serum cholesterol response to dietary intervention. Metabolism 40: 217221.

    Google Scholar 

  • Marcovina SM, Koschinsky ML (1998) Lipoprotein(a) as a risk factor for coronary artery disease. Am J Cardiol 82: 57U–66U

    Article  PubMed  CAS  Google Scholar 

  • McLeod HL, Evans WE (2001) Pharmacogenomics: unlocking the human genome for better drug therapy. Annu Rev Pharmacol Toxico141: 101–121

    Google Scholar 

  • Miettinen TA, Gylling H, Strandberg T et al (1998) Baseline serum cholestanol as predictor of recurrent coronary events in subgroup of Scandinavian simvastatin survival study. Finnish 4S Investigators. Br Med J 316: 1127–1130

    Article  CAS  Google Scholar 

  • Milosavjevic D, Griglio S, Le Naour G et al (2001)Preferential reduction of very low density lipoprotein-1 particle number by fenofibrate in type IIB hyperlipidemia: consequences for lipid accumulation in human monocyte-derived macrophages. Atherosclerosis 155: 251–260

    Google Scholar 

  • Miserez AR, Muller PY, Barella L et al (2002) Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolaemia. Atherosclerosis 164: 1526

    Article  Google Scholar 

  • Muller PJ, Miserez AR (2001) Mutations in the gene encoding sterol-regulatory element-binding protein-2 in hypercholesterolaemic subjects. Atherosclerosis Supplements 2: 69

    Article  Google Scholar 

  • Murphy MP (2000) Current pharmacogenomic approaches to clinical drug development. Pharmacogenomics 1: 115–123

    Article  PubMed  CAS  Google Scholar 

  • Myant NB (1993) Familial defective apolipoprotein B-100: a review, including some comparisons with familial hypercholesterolaemia [published erratum appears in Atherosclerosis 1994;105:253]. Atherosclerosis 104: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Ota N, Kodama T et al (1999) Isolation and radiation hybrid mapping of a highly polymorphic CA repeat sequence at the SREBP cleavage-activating protein ( SCAP) locus. J Hum Genet 44: 350–351

    Google Scholar 

  • Nemeth A, Dinya E, Audikovszky M et al (1994) Effect of Gevilon therapy and its relation to E polymorphism. Ory Hetil 135: 735–741

    CAS  Google Scholar 

  • Nemeth A, Szakmary K, Kramer J et al (1995) Apolipoprotein E and complement C3 polymorphism and their role in the response to gemfibrozil and low fat low cholesterol therapy. Eur J Clin Chem Clin Biochem 33: 799–804

    CAS  Google Scholar 

  • Nie L, Niu S, Vega GL et al 1998 ) Three polymorphisms associated with low hepatic lipase activity are common in African Americans. J Lipid Res 39: 1900–1903

    PubMed  CAS  Google Scholar 

  • Ojala JP, Helve E, Ehnholm C et al (1991)Effect of apolipoprotein E polymorphism and Xbal polymorphism of apolipoprotein B on response to lovastatin treatment in familial and non-familial hypercholesterolaemia. J Intern Med 230: 397–405

    Google Scholar 

  • O’Neill FH, Patel DD, Knight BL et al (2001) Determinants of variable response to statin treatment in patients with refractory familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 21: 832–837

    Article  PubMed  Google Scholar 

  • Ordovas JM, Lopez-Miranda J, Perez-Jimenez F et al (1995) Effect of apolipoprotein E and A-IV phenotypes on the low density lipoprotein response to HMG CoA reductase inhibitor therapy. Atherosclerosis 113: 157–166

    CAS  Google Scholar 

  • Ordovas JM, Vargas C, Santos A et al (1999) The G/A promoter polymorphism at the apoAl gene locus predicts individual variability in fasting and postprandial responses to the HMG CoA reductase inhibitor atorvastatin. Circulation 100 (Suppl I): I–239

    Article  Google Scholar 

  • Ordovas JM, Cupples LA, Corella D et al (2000) Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study. Arterioscler Thromb Vasc Biol 20: 13231329

    Google Scholar 

  • Ordovas JM, Mooser V (2002) The apoE locus and the pharmacogenetics of lipid response. Curr Opin Lipidol 13: 113–117

    Article  PubMed  CAS  Google Scholar 

  • Ordovas JM, Corella D, Cupples LA et al (2002a) Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. Am J Clin Nutr 75: 38–46

    PubMed  CAS  Google Scholar 

  • Ordovas JM, Corella D, Demissie S et al (2002b) Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoter on high-density lipoprotein metabolism—evidence of a strong dose effect in this gene-nutrient interaction in the Framingham study. Circulation 106: 2315–2321

    Article  PubMed  CAS  Google Scholar 

  • Osborne TF (2000) Sterol regulatory element binding protein (SREBPs): Key regulators of nutritional homeostasis and insulin action. J Biol Chem 275: 32379–32382

    Article  PubMed  CAS  Google Scholar 

  • Pedro-Botet JP, Schaefer EJ, Bakker-Arkema RG et al (2001) Apolipoprotein E genotype affects plasma lipid response to atorvastatin in a gender specific manner. Atherosclerosis 58: 183–193

    Google Scholar 

  • Pena R, Lahoz C, Mostaza JM (2002) Effect of apoE genotype on the hypolipidaemic response to pravastatin in an outpatient setting. J Int Med 251: 518–525

    Article  CAS  Google Scholar 

  • Puckey L, Knight B (1999) Dietary and genetic interactions in the regulation of plasma lipoprotein(a). Curr Opin Lipidol 10: 35–40

    Article  PubMed  CAS  Google Scholar 

  • Puckey L, Knight B (2001) Variation at position 162 of peroxisome proliferator-activated receptor a does not influence the effect of fibrates on cholesterol or triacylglycerol concentrations in hyperlipidaemic subjects. Pharmacogenetics 11: 619–624

    Article  PubMed  CAS  Google Scholar 

  • Rantala M, Rantala TT, Savolainen MJ et al (2000) Apolipoprotein B gene polymorphisms and serum lipids: meta-analysis of the role of genetic variation in responsiveness to diet. Am J Clin Nutr 71: 713–24

    PubMed  CAS  Google Scholar 

  • Reihner E, Bjorkhem I, Angelin B et al (1989) Bile acid synthesis in humans: regulation of hepatic microsomal cholesterol 7 alpha-hydroxylase activity. Gastroenterology 97: 1498–1505

    PubMed  CAS  Google Scholar 

  • Rubin J, Berglund L (2002) Apolipoprotein E and diets: a case of gene-nutrient interaction? Curr Opin Lipidol 13: 25–32

    Article  CAS  Google Scholar 

  • Rubins HB, Robins SJ, Collins D et al, for the Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. N Engl J Med 341: 410–418

    Google Scholar 

  • Rusnak JM, Kisabeth RM, Herbert DP et al (2001) Pharmacogenomics: a clinicians primer on emerging technologies for improved patient care. Mayo Clin Proc 2001; 76: 299–309

    Article  Google Scholar 

  • Rust S, Rosier M, Funke H et al (1999) Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22: 352–355

    Article  PubMed  CAS  Google Scholar 

  • Salek L, Lutucuta S, Ballantyne CM et al (2002) Effects of SREBF-la and SCAP polymorphisms on plasma levels of lipids, severity, progression and regression of coronary atherosclerosis and response to therapy with fluvastatin. J Mol Med 80: 737–744

    Article  PubMed  CAS  Google Scholar 

  • Sanllehy C, Casals E, Rodriguez-Villar C et al (1998) Lack of interaction of apolipoprotein E phenotype with the lipoprotein response to lovastatin or gemfibrozil in patients with primary hypercholesterolemia. Metabolism 47: 560–565

    CAS  Google Scholar 

  • Santamarina-Fojo S, Haudenschild C, Amar M (1998) The role of hepatic lipase in lipoprotein metabolism and atherosclerosis. Curr Opin Lipidol 9: 211–219

    Article  PubMed  CAS  Google Scholar 

  • Sapone A, Peters JM, Sakai S et al (2000) The human peroxisome proliferator-activated receptor alpha gene: identification and functional characterization of two natural allelic variants. Pharmacogenetics 10: 321–333

    Article  PubMed  CAS  Google Scholar 

  • Schaefer JR, Scharnagl H, Baumstark MW et al (1997) Homozygous familial defective apolipoprotein B-100. Enhanced removal of apolipoprotein E-containing VLDLs and decreased production of LDLs. Arterioscler Thromb Vasc Biol 17: 348–353

    Google Scholar 

  • Schoonjans K, Peinado-Onsurbe J, Lefebvre AM et al (1996) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. Embo J 15: 5336–48

    PubMed  CAS  Google Scholar 

  • De la Sema G, Cadarso C (1999) Fenofibrate decreases plasma fibrinogen, improves lipid profile, and reduces uricemia. Clin Pharmacol Ther 66; 2: 166–172

    Google Scholar 

  • Serruys PW, de Feyter P, Macaya C et al (2002) Fluvastatin for prevention of cardiac events following successful first percutaneous coronary intervention: a randomized controlled trial. JAMA 287: 3215–3222

    CAS  Google Scholar 

  • Shah PK, Kaul S, Nilsson J et al (2001) Exploiting the vascular protective effects of high-density lipoprotein and its apolipoproteins–an idea whose time for testing is corning, part I. Circulation 104: 2376–2383

    Article  PubMed  CAS  Google Scholar 

  • Shepherd J, Blauw GJ, Murphy MB et al (2002) Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360: 1623–1630.

    Article  PubMed  CAS  Google Scholar 

  • Sica DA, Gehr TWB (2002) Rhabdomyolysis and statin therapy: relevance to the elderly. Am J Geriat Cardiol 11: 48–55

    Article  Google Scholar 

  • Sijbrands EJ, Lombardi MP, Westendorp RG et al (1998) Similar response to simvastatin in patients heterozygous for familial hypercholesterolemia with mRNA negative and mRNA positive mutations. Atherosclerosis 136: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Sijbrands EJG, Westendorp RGJ, Defesche JC et al (2001) Mortality over two centuries in large pedigree with familial hypercholesterolaemia: family tree mortality study. Brit Med J 322: 1019–1023

    Article  PubMed  CAS  Google Scholar 

  • Sole R, Goodwin B (2000) Signs of life: how complexity pervades biology. New York: Basic Books

    Google Scholar 

  • Soria LF, Ludwig EH, Clarke HR et al (1989) Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci U S A 86: 587–91

    Article  PubMed  CAS  Google Scholar 

  • Staffa JA, Chang J, Green L (2002) Cerivastatin and reports of fatal rhabdomyolysis [letter]. N Engl J Med 346: 539–540

    Article  PubMed  Google Scholar 

  • Staels B, Peinado-Onsurbe J, Auwerx J (1992) Down-regulation of hepatic lipase gene expression and activity by fenofibrate. Biochim Biophys Acta 1123: 227–230

    Article  PubMed  CAS  Google Scholar 

  • Staels B, Vu-Dac N, Kosykh Vet al (1995) Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. J. Clin. Invest 95: 705–712

    Google Scholar 

  • Staels B, Dallongeville J, Auwerx J et al (1998a) Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 98: 2088–2093

    Article  PubMed  CAS  Google Scholar 

  • Staels B, Koenig W, Habib A et al (1998b) Activation of human aortic smooth-muscle cells is inhibited by PPARa but not by PPARy activators. Nature. 393: 790–793

    Article  PubMed  CAS  Google Scholar 

  • Stengard JH, Clark AG, Weiss KM et al (2002) Contributing of 18 additional DNA sequence variations in the gene encoding apolipoprotein E to explaining variation in quantitative measures of lipid metabolism. Am J Hum Genet 71: 501–517

    CAS  Google Scholar 

  • Tall A (1995) Plasma lipid transfer proteins. Annu Rev Biochem 64: 235–257

    Article  PubMed  CAS  Google Scholar 

  • Talmud PJ, Hawe E, Robertson K et al (2002) Genetic and environmental determinants of plasma high density lipoprotein cholesterol and apolipoprotein AI concentration in healthy middle-aged men. Ann Hum Genet 66: 111–124

    Article  PubMed  CAS  Google Scholar 

  • Tanaka E (1999) Update: genetic polymorphism of drug metabolizing enzymes in humans. J Clin Pharm Ther 24: 323–329

    Article  PubMed  CAS  Google Scholar 

  • Taylor KD, Scheuner MT, Rotter JI et al (1999) Genetic test to determine non-responsiveness to statin drug treatment. Cedars Sinai Medical Center, Los Angeles, U.S.A. US Patent PCT/US00/18308, EP 1228241

    Google Scholar 

  • The BIP study group (2000) Secondary prevention by raising HDLcholesterol and reducing triglycerides in patients with coronary artery disease—the Bezafibrate Infarction Prevention (BIP) Study. Circulation 102: 21–27

    Article  Google Scholar 

  • Thompson GR, ONeill F, Seed M (2002) Why some patients respond poorly to statins and how this might be remedied. Eur Heart J 23: 200–206

    Article  PubMed  CAS  Google Scholar 

  • Tso P, Liu M, Kalogeris TJ (1999) The role of apolipoprotein A-IV in food intake regulation. J Nutr 129: 1503–1506

    PubMed  CAS  Google Scholar 

  • Tu AY, AlbersJJ (1999) DNA sequences responsible for reduced promoter activity of human phospholipid transfer protein by fibrate. Biochem Biophys Res Commun 264: 802–807

    Google Scholar 

  • Ucar M, Mjörndal T, Dahlqvist R (2000) HMG-CoA reductrase inhibitors and myotoxicity. Drug Safety 22: 441–457

    Article  PubMed  CAS  Google Scholar 

  • Ulrich S, Hingorani AD, Martin J (2000) What is the optimal age for starting lipid lowering treatment? a mathematical model. Brit Med J 320: 1134–1140

    Article  PubMed  CAS  Google Scholar 

  • Utermann G (1999) Genetic architecture and evolution of the lipoprotein(a) trait. Curr Opin Lipidol 10: 133–41

    Article  PubMed  CAS  Google Scholar 

  • Van Hout BA, Simoons ML (2001) Cost-effectiveness of HMG coenzyme reductase inhibitors–whom to treat? Eur Heart J 22: 751–761

    Article  PubMed  Google Scholar 

  • Vaughan CJ, Gotto AM, Jr, Basson CT (2000) The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 35: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Vedie B, Jeunemaitre X, Megnien JL et al (2001) A new DNA polymorphism in the 5’ un-translated region of the human SREBP- la is related to development of atherosclerosis in high cardiovascular risk population. Atherosclerosis 154: 589–597

    Article  PubMed  CAS  Google Scholar 

  • Vergopoulos A, Knoblauch H, Schuster H (2002) DNA testing for familial hypercholesterolemia–improving disease recognition and patient care. Am J Pharmacogenomics 2: 253–262

    Article  PubMed  CAS  Google Scholar 

  • Vesell ES (2000) Advances in pharmacogentics and pharmacogenomics. J Clin Pharmacol 40: 930–938

    Article  PubMed  CAS  Google Scholar 

  • Vogel F (1959) Moderne Probleme in der Humangenetik. Ergeb Inn Med Kinderheilkd 12: 52–125

    Article  Google Scholar 

  • Vohl MC, Lepage P, Gaudet D et al (2000) Molecular scanning of the human PPARa gene. Association of the 1162v mutation with hyperapobetalipoproteinemia. J Lipid Res 41: 945–952

    PubMed  CAS  Google Scholar 

  • Vohl MC, Szots F, Lelièvre M et al (2002) Influence of LDL receptor gene mutation and apo E polymorphism on lipoprotein response to simvastatin treatment among adolescents with heterozygous familial hypercholesterolemia. Atherosclerosis 160: 361–368

    Google Scholar 

  • Vuorio AF, Ojala JP, Sarna S et al (1995) Heterozygous familial hypercholesterolaemia: the influence of the mutation type of the low-density-lipoprotein receptor gene and PvuII polymorphism of the normal allele on serum lipid levels and response to lovastatin treatment. J Intern Med 237: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Wallace AJ, Humphries SE, Fisher RM et al (2000) Genetic factors associated with response of LDL subfractions to change in the nature of dietary fat. Atherosclerosis 149: 387–394

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Freeman DJ, Grundy SM et al (1998) Linkage between cholesterol 7alpha-hydroxylase and high plasma low-density lipoprotein cholesterol concentrations. J Clin Invest 101: 1283–1291

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Hu D, Lee ET et al (2002) Lipoprotein(a) in American Indians is low and not independently associated with cardiovascular disease: The Strong Heart Study. Ann Epidemiol 12: 107–114

    Google Scholar 

  • Weggemans RM, Zock PL, Ordovas JM et al (2001) Apoprotein E genotype and the response of serum cholesterol to dietary fat, cholesterol and cafestol. Atherosclerosis 154: 547–555

    CAS  Google Scholar 

  • Weinberg RB (2002) Apolipoprotein A-IV polymorphisms and diet-gene interactions. Curr Opin Lipidol 13: 125–134

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek SJ, Tsongalis GJ (2001) Pharmacogenomics: will it change the field of medicine. Clin Chim Acta 308: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann BR, Stack CB, Stephens JC et al (2002) Haplotypes of CETP predict clinical response to statins. [Asia Pacific Scientific Forum: the Genomics Revolution: Bench to Bedside to Community and 42nd Annual Conference on Cardiovascular Disease Epidemiology and Prevention. Honolulu, Hawaii, April 23–26, 2002]. Circulation 105: e96 (abstract 51 page 10)

    Google Scholar 

  • Witte JS, Elston RC, Cardon LR (2000) On the relative sample size required for multiple comparisons. Stat Med 69: 369–372

    Article  Google Scholar 

  • Wittrup HH, Tybjaerg-Hansen A, Nordestgaard BG (1999) Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease. A meta-analysis. Circulation 99: 2901–2907

    Google Scholar 

  • Yamada M. (1997) Influence of apolipoprotein E polymorphism on bezafibrate treatment response in dyslipidemic patients. J Atheroscler Thromb 4: 40–44

    CAS  Google Scholar 

  • Yamashita S, Hirano K, Sakai N et al (2000a) Molecular biology and pathophysiological aspects of plasa cholesteryl ester transfer protein. Biochim Biophys Acta 1529: 257–275

    Google Scholar 

  • Yamashita S, Maruyama T, Hirano KI et al (2000b) Molecular mechanisms, lipoprotein abnormalities and atherogenicity of hyperalphalipoproteinemia. Atherosclerosis 152: 271–285

    Article  PubMed  CAS  Google Scholar 

  • Ye S, Watts GF, Mandalia S et al (1995) Preliminary report: genetic variation in the human stromelysin promotor is associated with progression of coronary atherosclerosis. Br Heart J 73: 209–215

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Cavanna J, Winkelmann BR et al (1995) Common genetic variants of lipoprotein lipase that relate to lipid transport in patients with premature coronary artery disease. Clin Genet 48: 293–298

    Article  PubMed  CAS  Google Scholar 

  • Zambon A, Hokanson JE, Brown BG et al (1999) Evidence for a new pathophysiological mechanism for coronary artery disease regression: hepatic lipase-mediated changes in LDL density. Circulation 99: 1959–64

    Article  PubMed  CAS  Google Scholar 

  • Zambon A, Deeb SS, Brown BG et al (2001) Common hepatic lipase gene promoter variant determines clinical response to intensive lipid lowering treatment. Circulation 103: 792–798

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winkelmann, B.R., Hoffmann, M.M., März, W. (2004). Lipid-Lowering Responses Modified by Genetic Variation. In: Wilkins, M.R. (eds) Cardiovascular Pharmacogenetics. Handbook of Experimental Pharmacology, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06214-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06214-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07291-8

  • Online ISBN: 978-3-662-06214-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics