Skip to main content

Current Perspectives on Gene and Cell-Based Therapies for Myocardial Protection, Rescue and Repair

  • Chapter
Cardiovascular Pharmacogenetics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 160))

  • 184 Accesses

Abstract

Despite significant therapeutic advances, heart disease remains the prevalent cause of premature death across all age and racial groups, accounting for a significant proportion of all hospital admissions and putting enormous financial strain on health delivery systems. Recent developments in the understanding of the molecular mechanisms of myocardial disease have led to the identification of novel therapeutic targets, and the availability of efficient cardiotropic vectors offers the opportunity for the design of gene therapies for both protection and rescue of the myocardium. Genetic therapies have been devised to treat complex diseases such as myocardial ischemia, hypertension, atherosclerosis, restenosis and inherited myopathies in various animal models. Some of these experimental therapies have made a successful transition to clinical trial and are now being considered for use in human patients. The recent isolation of regeneration-competent endothelial and cardiomyocyte precursor cells from adult bone marrow provides the opportunity for repair of the damaged heart using autologous cell transplantation. Cell-based therapies may have potential application in neovascularization and regeneration of ischemic and infarcted myocardium, in blood vessel reconstruction and in bioengineering of artificial organs and vascular prostheses. With advances in the field occurring at a rapid pace, we can expect the development of vectors and delivery methods with enhanced safety, efficacy and specificity. The advent of genomic screening technology will allow not only the identification of novel therapeutic targets, but will also facilitate the detection of disease-causing polymorphisms and permit the design of individualized gene and cell-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal RS, Muangman S, Melo LG et al (2001) Recombinant adeno-associated virus mediated antioxidant enzyme delivery as preventive gene therapy against ischemiareperfusion injury of the rat myocardium. Mol Ther 3: A837

    Google Scholar 

  • Akhtar S, Hughes MD, Khan A et al (2000). The delivery of antisense therapeutics. Adv Drug Del Rev 44: 3–21

    CAS  Google Scholar 

  • Akhter SA, Skaer CA, Kypson AP et al (1997) Restoration of beta-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. Proc Natl Acad Sci USA 94: 12100–12105

    PubMed  CAS  Google Scholar 

  • Agata J, Chao L, Chao J (2002) Kallikrein gene delivery improves cardiac reserve and attenuates remodeling after myocardial infarction. Hypertension 40: 653–659

    PubMed  CAS  Google Scholar 

  • Alexander MY, Webster KA, McDonald PH et al (1999) Gene transfer and models of gene therapy for the myocardium. Clin Exp Pharmacol Physiol 26: 661–668

    PubMed  CAS  Google Scholar 

  • Antos CL, McKinsey TA, Frey N et al (2002) Activated glycogen synthase kinase 3-ß suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 99: 907–912

    PubMed  CAS  Google Scholar 

  • Aoki M, Morishita R, Taniyama Yet al (2000) Therapeutic angiogenesis induced by hepatocyte growth factor: potential gene therapy for ischemic diseases. J. Atheroscler Thromb 7: 71–76

    PubMed  CAS  Google Scholar 

  • Applebaum-Bowden D, Kobayashi J, Kashyap VS et al (1996) Hepatic lipase gene therapy in hepatic lipase-deficient mice: Adenovirus-mediated replacement of a lipolytic enzyme to the vascular endothelium. J Clin Invest 97: 799–805

    Google Scholar 

  • Armstrong PW, Moe GW (1994). Medical advances in the treatment of congestive heart failure. Circulation 88: 2941–2952

    Google Scholar 

  • Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putatitve progenitor endothelial cells for angiogenesis. Science 275: 964–967

    PubMed  CAS  Google Scholar 

  • Asahara T, Masuda H, Takahashi T et (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization Circ Res 85: 221–228

    CAS  Google Scholar 

  • Asakura M, Kitakaze M, Taskashima S et al (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy. Nature Med 8: 35–40

    Google Scholar 

  • Baker Dl, Hashimoto K, Grupp IL et al (1998) Targeted overexpression of the sarcoplasmic reticulum Cat+ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res 83: 1205–1214

    Google Scholar 

  • Balser JR (2002) Inherited sodium channelopathies: models for acquired arrhytmias? Am J Physiol 282: H1175 - H1180

    CAS  Google Scholar 

  • Bashir R, Vale PR, Isner JM et al (2002) Angiogenic gene therapy: pre-clinical studies and phase I clinical data. Kideny Int 61 (Suppl 1): 110–114

    Google Scholar 

  • Beeri R, Guerrero JL, Supple G et al (2002) New efficient catheter-based system for myocardial gene delivery. Circulation 106: 1756–1759

    PubMed  CAS  Google Scholar 

  • Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. New Engl J Med 344: 175–1757

    Google Scholar 

  • Bennett MR, O’Sullivan MO (2001) Mechanisms of angioplasty and stent restenosis: implications for design of rational therapy. Pharmacol Ther 91: 149–166

    PubMed  CAS  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205 Boekstegers P, Degenfeld C von, Giehrl W et al (2000) Myocardial gene transfer by selec-

    Google Scholar 

  • tive pressure-regulated retroinfusion of coronary veins. Gen Ther 7:232–240 Braun-Dullaeus RD, Mann MJ, Dzau VJ (1998) Cell cycle progression. New therapeutic target for vascular proliferative disease. Circulation 98: 82–89

    Google Scholar 

  • Brauner R, Nonoyama M, Laks H et al (1997) Intracoronary adenovirus-mediated transfer of immunosuppressive cytokine genes prolongs allograft survival. J Thorac Cardiovasc Surg 114: 923–933

    PubMed  CAS  Google Scholar 

  • Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double edged sword. J Clin Invest 76: 1713–1719

    PubMed  CAS  Google Scholar 

  • Brocheriou V, Hagege AA, Oubenaissa A et al (2000) Cardiac functional improvement by a human Bd-2 transgene in a mouse model of ischemia/reperfusion injury. J Gene Med 2: 326–333

    PubMed  CAS  Google Scholar 

  • Bruneau BG (2002) Transcriptional regulation of vertebrate cardiac morphogenesis 90: 509–519

    Google Scholar 

  • Carden DL, Granger DN (2000) Pathophysiology of ischemia-reperfusion injury. Am J Pathol 190: 255–266

    CAS  Google Scholar 

  • Carmeliet P (2000a) Mechanisms of angiogenesis and arteriogenesis. Nature Medicine 6: 389–395

    PubMed  CAS  Google Scholar 

  • Carmeliet P (2000b) VEGF gene therapy: stimulating angiogenesis or angioma-genesis. Nature Medicine 6: 1102–1103

    PubMed  CAS  Google Scholar 

  • Cartier R, Reszka R (2002) Utilization of synthetic peptides containing nuclear localization signals for non viral gene transfer systems. Gene Ther 9: 157–167

    PubMed  CAS  Google Scholar 

  • Chang MW, Barr E, Lu MM et al (1995a) Adenovirus-mediated overexpression of the cyclin/cyclin dependent kinase inhibitor, p21 inhibits vascular smooth muscle proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J Clin Invest 96: 2260–2268

    PubMed  CAS  Google Scholar 

  • Chang MW, Barr E, Seltzer J et al (1995b) Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 267: 518–522

    PubMed  CAS  Google Scholar 

  • Channon KM, Qian HS, George SE (2000) Nitric oxide synthase in atherosclerosis and vascular injury. Insights from experimental gene therapy. Arterioscler Throm Vasc Biol 20: 1873–1881

    Google Scholar 

  • Chatterjee S, Stewart AS, Bish LT et al (2002) Viral gene transfer of the antiapoptotic factor Bd-2 protects against chronic ischemic heart failure. Circulation 106 (Suppl): 1212–1217

    Google Scholar 

  • Chen D, Krasinski K, Sylvester A et al (1997) Downregulation of cyclin-dependent kinase 2 activity and cyclin A promoter activity in vascular smooth muscle cells by p27 (KIP1), an inhibitor of neointima formation in the rat carotid artery. J Clin Invest 99: 2334–2341

    PubMed  CAS  Google Scholar 

  • Chen EP, Bittner HB, Davis RD et al (1998) Physiological effects of extracellular superoxide dismutase transgene overexpression on myocardial function after ischemia and reperfusion injury. J Thorac Cardiovasc Surg 115: 450–458

    PubMed  CAS  Google Scholar 

  • Chen SJ, Rader DJ, Tazelaar J et al (2000) Prolonged correction of hyperlipidemia with familial hypercholesterolemia using an adeno-associated viral vector expressing very low density lipoprotein receptor. Mol Ther 2: 256–261

    PubMed  CAS  Google Scholar 

  • Chen H, Mohuczy D, Li D et al (2001) Protection against ischemia/reperfusion injury and myocardial dysfunction by antisense-oligodeoxyynucleotide directed at angiotensinconverting enzyme mRNA. Gene Ther 8: 804–810

    PubMed  CAS  Google Scholar 

  • Chien KR (2000) Genomic circuits and the integrative biology of cardiac disease. Nature 407: 227–232

    PubMed  CAS  Google Scholar 

  • Chirmule N, Propert K, Magosin S et al (1999) Immune response to adenovirus and adenoassociated virus in humans. Gene Ther 6: 1574–1583

    PubMed  CAS  Google Scholar 

  • Chowdhury JR, Grossman M, Gupta S et al(1991) Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits. Science 254: 1802 1805

    Google Scholar 

  • Chu Y, Iida S, Lund DD et al (2003) Gene transfer of extracellular superoxide dismutase reduces arterial pressure in spontaneously hypertensive rats: Role of heparin binding domain. Circ Res 92: 461–468

    Google Scholar 

  • Coffin RS, Howard MK, Cummings DV et al (1996). Gene delivery to the heart in vivo and to cardiac myocytes and vascular smooth muscle cells in vitro using herpes virus vectors. Gene Ther 3: 560–566

    PubMed  CAS  Google Scholar 

  • Colucci WS (1997) Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 80 (11A): 15L - 25L

    PubMed  CAS  Google Scholar 

  • Daly G, Chernajovski Y (2000) Recent developments in retroviralk-mediated gene transduction. Mol. Ther 2: 423–434

    Google Scholar 

  • Datwyler DA, Eppenberger HM, Koller D et al (1999) Efficient gene delivery into adult cardiomyocytes by recombinant Sindis virus. J Mol Med 77: 859–864

    PubMed  CAS  Google Scholar 

  • D’Agostino RB, Russel MW, Huse DM et al (2000) Primary and subsequent coronary risk appraisal: new results from the Framingham study. Am Heart J 139: 272–281

    PubMed  Google Scholar 

  • Deb A, Wang S, Skelding KA et al (2003) Bone marrow-derived cardiomyocytes are present in adult human heart. A study of gender-mismatched bone marrow transplantation patients. Circulation 107: 1247–1249

    Google Scholar 

  • Del Monte F, Harding SE, Schmidt U et al (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100: 2308–2311

    Google Scholar 

  • Del Monte F, Williams E, Lebeche D et al (2001) Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Cat+-ATPase in a rat model of heart failure. Circulation 104: 1424–1429

    PubMed  Google Scholar 

  • Del Monte F, Harding SE, Dec W et al (2002) Targeting phosphalamban by gene transfer in human heart failure. Circulation 105: 904–907

    PubMed  Google Scholar 

  • Dicheck DA, Anderson J, Kelly AB et al (1996) Enhanced antithrombotic effects of endothelial cells expressing recombinant plasminogen activators transduced with retroviral vectors. Circulation 93: 301–309

    Google Scholar 

  • Dimmeler S, Aicher A, Vasa M et al (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI3-kinase/Akt pathway. J Clin Invest 108: 391–397

    PubMed  CAS  Google Scholar 

  • Dobrzynski E, Wang C, Chao J et al (2000) Adrenomedullin gene delivery attenuates hypertension, cardiac remodeling and renal injury in deoxycorticosterone acetate salt hypertensive rats. Hypertension 36: 995–1001

    PubMed  CAS  Google Scholar 

  • Donahue JK, Heldman AW, Fraser H et al (2000) Focal modification of electrical conduction in the heart by viral gene transfer. Nature Med 6: 1395–1398

    PubMed  CAS  Google Scholar 

  • Dzau VJ, Mann MJ, Morishita R et al (1996) Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci U S A 93: 11421–11425

    PubMed  CAS  Google Scholar 

  • Ehsan A, Mann MJ, Dell’Acqua G et al (2002) Endorhelial healing in vein grafts. Proliferative burst is unimpaired by genetic therapy of neointimal disease. Circulation 105: 1686–1692.

    Google Scholar 

  • Ennis IL, Li RA, Murphy AM et al (2002) Dual gene therapy with SERCA1 and Kir2.1 ab- breviates excitation without suppressing contractility. J Clin Invest 109: 393–400

    PubMed  CAS  Google Scholar 

  • Eizema K, Fechner H, Bexstarosti K et al (2000) Adenovirus-based phosphalamban anti-sense expression as a novel approach to improve cardiac contractile function. Circulation 101: 2193–2199

    PubMed  CAS  Google Scholar 

  • Feeley BT, Poston RS, Park AK et al (2000) Optimization of ex vivo pressure mediated delivery of antisense oligodeoxynucleotides to ICAM-1 reduces reperfusion injury in rat cardiac allografts. Transplantation 69: 1067–74

    PubMed  CAS  Google Scholar 

  • Feldman LJ, Isner JM (1995) Gene therapy for vulnerable plaque. J Am Coll Cardiol 26: 826–833

    PubMed  CAS  Google Scholar 

  • Frangogiannis NG, Perrard JL, Mendoza LH et al (1998) Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation 98: 687–698

    PubMed  CAS  Google Scholar 

  • Fromes Y, Salmon A, Wang X et al (1999) Gene delivery to the myocardium by intrapericardial injection. Gene Ther 6: 683–688

    PubMed  CAS  Google Scholar 

  • Fuchs S, Baffour R, Zhou YF et al (2001) Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 37: 1726–1732

    PubMed  CAS  Google Scholar 

  • Fukui T, Yoshiyama M, Hanatani A et al (2001) Expression of p22-phox and gp91-phox, essential components of the NADPH oxidase, increases after myocardial infarction Biochem Biophys Res Commun 281: 1200–1206

    CAS  Google Scholar 

  • Funk M, Krumholz, HM (1996) Epidemiology and economic impact of advanced heart failure. J. Cardiovasc. Nurs. 10: 1–10

    Google Scholar 

  • Galinanes M, Loubani M, Davies J et al (2002) Safety and efficacy of transplantation of autologous bone marrow into scarred myocardium for the enhancement of cardiac function in man. Circulation 106 (Suppl II): II - 463

    Google Scholar 

  • Giordano FJ, Ping P, McKirnan MD et al (1996) Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2: 534–539

    PubMed  CAS  Google Scholar 

  • Givertz MM, Colucci WS (1998) New targets for heart failure therapy: endothelin, inflammatory cytokines, and oxidative stress. Lancet 352 (Suppl 1): 5134–5138

    Google Scholar 

  • Golino P, Cirillo P, Calabro P et al (2001) Expression of exogenous tissue factor pathway inhibitor in vivo suppresses thrombus formation in injured rabbit carotid arteries. J Am Coll Cardiol 38: 569–576

    PubMed  CAS  Google Scholar 

  • Griffiths I, Binley K, Iqball S et al (2000) The macrophage—a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 7: 255–262

    PubMed  CAS  Google Scholar 

  • Grines CL, Watkins MW, Helmer G et al (2002) Angiogenic gene therapy ( AGENT) trial in patients with stable angina pectoris. Circulation 105: 1291–1297

    Google Scholar 

  • Grossman M, Rader DJ, Muller DW et al (1995) A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat Med 1: 1148–1154

    PubMed  CAS  Google Scholar 

  • Gunn J, Holt CM, Francis SE et al (1997) The effect of oligonucleotides to c-myb on vascular smooth muscle cell proliferation and neointima formation after porcine coronary angioplasty. Circ Res 80: 520–531

    PubMed  CAS  Google Scholar 

  • Hajjar RJ, Kang, Gwathmey JK et al (1997) Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum ATPase in isolated rat myocytes. Circulation 95: 423429

    Google Scholar 

  • Hajjar RJ, del Monte F, Matsui T et al (2000) Prospects for gene therapy for heart failure. Circulation 86: 616–621

    CAS  Google Scholar 

  • Hakuno D, Fukuda K, Makino S et al (2002) Bone marrow-derived regenerated cardiomyocytes ( CMG cells) express functional adrenergic and muscarinic receptors. Circulation 105: 380–386

    Google Scholar 

  • Hall WD (1999) Risk reduction associated with lowering systolic blood pressure: review of clinical trial data. Am. Heart J. 138: 225–230

    PubMed  CAS  Google Scholar 

  • Hammond HK, McKirman MD (2001) Angiogenic gene therapy for heart disese: a review of animal studies and clinical trials. Cardiovasc Res 49–561–567

    Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418: 244–251.

    PubMed  CAS  Google Scholar 

  • Harris JD, Schepelmann S, Athanasopoulos T et al (2002) Inhibition of atherosclerosis in apolipoprotein-E-deficient mice following muscle transduction with adeno-associated virus vectors encoding human apoliprotein-E. Gene Ther 9: 21–29

    PubMed  CAS  Google Scholar 

  • Harrison RL, Byrne BJ, Tung L (1998) Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett 435: 1–5

    PubMed  CAS  Google Scholar 

  • Hartigan-O’Connor D, Amalfitano A, Chamberlain JS (1999) Improved production of gutted adenovirus in cells expressing adenovirus preterminal protein and DNA polymerase. J Virol 73: 7835–7841

    PubMed  Google Scholar 

  • Hattori K, Heissig B, Tashiro K et al (2001) Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97: 3354–3360

    PubMed  CAS  Google Scholar 

  • Herttuala S-Y, Martin JF (2000) Cardiovascular gene therapy. Lancet 355: 213–222

    Google Scholar 

  • Holly TA, Drincic A, Byun Yet al (1999) Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31: 1709–1715

    PubMed  CAS  Google Scholar 

  • Hoppe UC, Marban E, Johns DC (2001) Distinct gene-specific mechanisms of arrhytmia revealed by cardiac gene transfer of two long QT disease genes, HERG and KCNE1. Proc Natl Acad Sci USA 98: 5335–5340

    PubMed  CAS  Google Scholar 

  • Hu, W-S, Pathak VK (2000) Design of retroviral vectors and helper cells for gene therapy. Pharmacol Rev 52: 493–511

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Ross J (2000) Models of dilated cardiomyopathy in the mouse and the hamster. Curr Opin Cardiol 15: 197–201

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Gu Y, Iwanaga Y et al (2002) Restoration of deficient membrane proteins in the cardiomyophatic hamster by in vivo cardiac gene transfer. Circulation 105: 502–508

    PubMed  CAS  Google Scholar 

  • Ikenaga S, Hamano K, Nishida M et al (2001) Autologous bone marrow implantation induced angiogenesis and improved deteriorated exdercise capacity in a rat ischemic hindlimb model. J Surg Res 96: 277–283

    PubMed  CAS  Google Scholar 

  • Inoue S, Egashira K, Ni W et al (2002) Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 106: 2700–2706

    PubMed  CAS  Google Scholar 

  • Isner JM (2002) Myocardial gene therapy. Nature 415: 234–239

    PubMed  CAS  Google Scholar 

  • Iwaguro H, Yamaguchi J, Kalka C et al (2002) Endothelial progenitor cell vascular endo-thelial growth factor gene transfer for vascular regeneration. Circulation 105: 732–738

    PubMed  CAS  Google Scholar 

  • Jackson K, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107: 1395–1402

    PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49

    PubMed  CAS  Google Scholar 

  • Juan SH, Lee TS, Tseng KW et al (2001) Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104: 1519–1525

    PubMed  CAS  Google Scholar 

  • Kalka C, Masuda H, Takahashi T et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells foe therapeutic neovascularization. Proc Natl Acad Sci USA 97: 3422–3427

    PubMed  CAS  Google Scholar 

  • Kannel WB, Belanger AJ (1991) Epidemiology of heart failure. Am Heart J 12: 951–957

    Google Scholar 

  • Kaplitt MG, Xiao X, Samulski RJ et al (2000) Long term gene transfer in porcine myocar-dium after coronary infusion of and adeno-associated virus vector. Ann Thorac Surg 62: 1669–1676

    Google Scholar 

  • Katovich MJ, Gelband CH, Reaves PW et al (1999) Reversal of hypertension by angiotensin II type I receptor antisense gene therapy in the adult SHR rat. Am J Physiol 277: H1260 - H1264

    PubMed  CAS  Google Scholar 

  • Kawada T, Nakazawa M, Nakauchi S et al (2002) Rescue of hereditary form of dilated cardiomyopathy by rAAV-mediated somatic gene therapy: Amelioration of morphological findings, sarcolemmal permeability, cardiac performance and the prognosis of TO-2 hamsters. Proc Natl Acad Sci USA 99: 901–906

    PubMed  CAS  Google Scholar 

  • Kawamoto A, Gwon H-C, Iwaguro H et al (2001) Therapeutic potential of ex vivo expand- ed endothelial progenitor cells for myocardial ischemia. Circulation 103: 634–637

    PubMed  CAS  Google Scholar 

  • Kereiakes DJ (1998) Preferential benefit of platelet glycoprotein IIb/IIIa receptor blockade: specific considerations by device and disease state. Am J Cardiol 81 (7A): 49E - 54E

    PubMed  CAS  Google Scholar 

  • Kibbe MR, Billiar TR, Tzeng E (2000) Gene therapy for restenosis. Circ Res 86: 829–833

    PubMed  CAS  Google Scholar 

  • Kim AY, Wallinsky PL, Kolodgie FD (2002) Early loss of thrombomodulin expresson im-pairs vein graft thromboresistance: implications for vein graft resistance. Circ Res 90: 205–212

    PubMed  CAS  Google Scholar 

  • Kimura B, Mohuczy D, Tang X et al (2001) Attenuation of hypertension and heart hypertrophy by adeno-associated virus delivering angiotensin antisense. Hypertension 37: 376–380

    PubMed  CAS  Google Scholar 

  • Kingma JG Jr, Plante S, Bogaty P (2000) Platelet GIIb/IIIa receptor blockade reduces in-farct size in a canine model of ischemia-reperfusion. J Am Coll Cardiol 36: 2317–2324

    PubMed  CAS  Google Scholar 

  • Knopp RH (1999) Drug treatment of lipid disorders. New Engl J Med 341: 498–411

    PubMed  CAS  Google Scholar 

  • Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myo-cardium by human bone marrow-derived angioblasts prevents cardiomyocyte apop-tosis, reduces remodeling and improves cardiac function. Nature Med 4: 430–436

    Google Scholar 

  • Krasnykh VN, Douglas JT, van Beusechem VW (2000) Gene targeting of adenoviral vec-tors. Mol Ther 1: 391–405

    PubMed  CAS  Google Scholar 

  • Krause DS (2002) Plasticity of marrow-derived cells. Gene Ther 9: 754–758

    PubMed  CAS  Google Scholar 

  • Kullo IJ, Simari Rd, Schwartz RS (1999) Vascular gene transfer. From bench to bedside. Arterioscler Thromb Vasc Biol 19: 196–207

    Google Scholar 

  • Labhasetwar V, Bonadio J Goldstein S et al (1998) A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle. J Pharm Sci 87: 1347–1350

    PubMed  CAS  Google Scholar 

  • Laflamme MA, Myerson D, Saffitz JE et al (2002) Evidence for cardiomyocyte repopula- tion by extracardiac progenitors in transplanted human hearts. Circ Res 90: 634–640

    PubMed  CAS  Google Scholar 

  • Laukkanen J, Lehtolainen P, Gough PJ et al (2000) Adenovirus-mediated gene transfer of a secreted form of human macrophage scavenger receptor inhibits modified low-density lipoprotein degradation and foam cell formation in macrophages. Circulation 101: 1091–1096

    PubMed  CAS  Google Scholar 

  • Laukkanen MO, Kivela A, Rissane T et al (2002) Adenovirus-mediated extracellular superoxide dismutase gene therapy reduces neointima formation in balloon-denuded rabbit aorta. Circulation 106: 1999–2003

    PubMed  CAS  Google Scholar 

  • Lee RJ, Springer ML, Blanco-Bose WE et al (2000) VEGF gene delivery to myocardium. Deleterious effect of upregulated expression. Circulation 102: 898–901

    Google Scholar 

  • Lee Y, Lee WH, Lee SC et al (1999) CD40L activation in circulating platelets in patients with acute coronary syndrome Cardiology 92: 11–16

    CAS  Google Scholar 

  • Lee LY, Patel SR, Hackett NR et al (2000) Focal angiogen therapy using intramyocardial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann Thorac Surg 69: 14–24

    PubMed  CAS  Google Scholar 

  • Leri A, Fiordaliso F, Setoguchi M et al (2000) Inhibition of p53 function prevents renon angiotensin system activation and stretch-mediated myocyte apoptosis. Am J Pathol 157: 843–857

    PubMed  CAS  Google Scholar 

  • Li F, Wang X, Capasso JM et al (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28: 1737–1746

    PubMed  CAS  Google Scholar 

  • Li Q, Li B, Wang X et al (1997) Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 100: 1991–1999

    PubMed  CAS  Google Scholar 

  • Li Q, Bolli R, Qiu Y et al (2001) Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction. Circulation 103: 1893–1898

    PubMed  CAS  Google Scholar 

  • Li RK, Mickle DA, Weisel RD et al (1997) Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96 (Suppl II): II-179–11186

    Google Scholar 

  • Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7:31–34 Lin KF, Chao J, Chao L (1995) Human atrial natriuretic peptide gene delivery reduces blood pressure in hypertensive rats. Hypertension 26: 847–853

    Google Scholar 

  • Lin KF, Chao L, Chao J (1997) Prolonged reduction of high blood pressure with human nitric oxide synthase delivery. Hypertension 30: 307–3113

    PubMed  CAS  Google Scholar 

  • Lin KF, Chao J, Chao L (1998) Atrial natriuretic peptide gene delivery attenuates hypertension, cardiac hypertrophy and renal injury in salt-sensitive rats. Hum Gene Ther 9: 1429–1438

    PubMed  CAS  Google Scholar 

  • Loscalzo J (2001) Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 88: 756–762

    PubMed  CAS  Google Scholar 

  • Losordo DW, Vale PR, Symes JF et al (1998) Gene therapy for myocardial angiogenesis. Initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia Circulation 98: 2800–2804

    CAS  Google Scholar 

  • Losordo DW, Vale PR, Isner JM (1999) Gene therapy for myocardial angiogenesis. Am Heart J 138: 5132–5141

    Google Scholar 

  • Maass A, Leinwand LA (2000) Animal models of hypertrophic cardiomyopathy. Curr Opin Cardiol 15: 189–196

    PubMed  CAS  Google Scholar 

  • Mack CA, Patel SA, Schwarz EA et al (1998) Biological bypass with the use of adenovirusmediated transfer of the complementary deoxyribonucleic acid for vascular endothe-liai growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 115: 168–177

    PubMed  CAS  Google Scholar 

  • Magnani M, Rossi L, Fraternale A et al (2002) Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Ther 9: 749–751

    PubMed  CAS  Google Scholar 

  • Mah C, Byrne BJ, Flotte TR(2002) Virus-based gene delivery systems. Clin Pharmacokinet 41: 901–911

    Google Scholar 

  • Makino S, Fukuda K, Miyoshi S et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103: 697–705

    PubMed  CAS  Google Scholar 

  • Makino N, Sugano M, Ohtsuka S et al (1999) Chronic antisense therapy for angiotensinogen on cardiac hypertrophy in spontaneously hypertensive rats. Cardiovasc Res 44: 43–548

    Google Scholar 

  • Mann DL (1999) Mechanisms and models in heart failure. A combinatorial approach. Circulation 100: 999–108

    PubMed  CAS  Google Scholar 

  • Mann MJ, Gibbons GH, Tsao PS et al (1997) Cell cycle inhibition preserves endothelial function in genetically-engineered rabbit vein grafts. J Clin Invest 99: 1295–1301

    PubMed  CAS  Google Scholar 

  • Mann MJ, Gibbons GH, Hutchinson H et al (1999) Pressure-mediated oligonucleotide transfection of rat and human cardiovascular tissues. Proc Natl Acad Sci USA 96: 6411–6416

    PubMed  CAS  Google Scholar 

  • Mann MJ, Whittemore AD, Donaldson MC et al (1999) Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: The PREVENT single-centre, randomized, controlled trial. Lancet 354: 1493–1498

    Google Scholar 

  • Marban E (2002) Cardiac channelopathies. Nature 415: 213–218

    PubMed  CAS  Google Scholar 

  • Martens JR, Reaves PY, Lu D et al (1998) Prevention of renovascular and cardiovascular pathophysiological changes in hypertension by angiotensin II type I receptor anti-sense gene therapy. Proc Natl Acad Sci USA 95: 2664–2669

    PubMed  CAS  Google Scholar 

  • Matsui T, Li L, Del Monte F et al (1999) Adenoviral gene transfer of activated phosphatidylinositol 3’-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 100: 2373–2379

    PubMed  CAS  Google Scholar 

  • Maurice JP, Hata JA, Shah AS et al (1999) Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary ß2-adrenergic receptor gene delivery. J Clin Invest 104: 21–29

    PubMed  CAS  Google Scholar 

  • McCarthy M (2001) Molecular decoy may keep bypass grafts open. Lancet 358:1703 McMurray JC, Pfeffer MA (2002) New therapeutic options in congestive heart failure. Circulation 105: 2099–2106

    Google Scholar 

  • Melo LG, Agrawal R, Zhang L et al (2002) Gene Therapy strategy for long term myocardial protection using adeno-associated virus-mediated delivery of heure oxygenase gene. Circulation 105: 602–607

    PubMed  CAS  Google Scholar 

  • Mehta JL, Li DY (1999) Inflammation in ischemic heart disease: Response to tissue injury or a pathogenic villain? Cardiovasc Res 43: 291–299

    PubMed  CAS  Google Scholar 

  • Miao W, Luo Z, Kitsis RN et al (2000) Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. J Mol Cell Cardiol 32: 2397–2402

    PubMed  CAS  Google Scholar 

  • Michelle DE, Metzger JM (2000) Contractile dysfunction in hypertrophic cardiomyopathy: Elucidating primary defects of mutant contractile proteins by gene transfer. Trends Cardiovasc Med 10: 177–182

    Google Scholar 

  • Milano CA, Allen LF, Rockuran HA et al (1994) Enhanced myocardial function in trans- genic mice overexpressing the beta 2-adrenergic receptor. Science 264: 582–586

    PubMed  CAS  Google Scholar 

  • Min JY, Yang Y, Converso KL et al (2002) Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol 92: 288–296

    PubMed  Google Scholar 

  • Miyamoto MI, del Monte F, Schmidt U et al (2000) Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 97: 793–798

    PubMed  CAS  Google Scholar 

  • Monahan PE, Samulski RJ (2000) Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 6: 433–440

    PubMed  CAS  Google Scholar 

  • Morishita R, Gibbons GH, Ellison KE et al (1993) Single intraluminal delivery of anti-sense cdc2 kinase and proliferating cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci USA 90: 8474–8478

    PubMed  CAS  Google Scholar 

  • Morishita R, Gibbons GH, Ellison KE et al (1994) Intimai hyperplasia after vascular injury is inhibited by antisense cdk2 kinase oligonucleotides. J Clin Invest 93: 1458–1464

    PubMed  CAS  Google Scholar 

  • Morishita R, Gibbons GH, Ellison KE et al (1995) A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci 92: 5855–5859

    PubMed  CAS  Google Scholar 

  • Morishita R, Sugimoto T, Aoki M et al (1997). In vivo transfection of cis element “decoy” against nuclear factor factor KB binding sites prevents myocardial infarction. Nat Med 3: 894–899

    PubMed  CAS  Google Scholar 

  • Morishita R, Higaki J, Tornita N et al (1998) Application of transcription factor “decoy” “strategy” strategy as a means of gene thereapy and study of gene expression in cardiovascular disease. Circ Res 82: 1023–1028

    PubMed  CAS  Google Scholar 

  • Morishita R, Gibbons GH, Tomita N et al (2000) Antisense oligodeoxynucleotide inhibition of vascular angiotensin converting enzyme expression attenuates neointimal formation. Arterioscler Thromb Vasc Biol 20: 915–922

    PubMed  CAS  Google Scholar 

  • Morse D, Choi AMK (2002) Herne oxygenase-1. The “emerging molecule” has arrived. Am J Resp Cell Mol Biol 27: 8–16

    Google Scholar 

  • Muller P, Pfeiffer P, Koglin J et al (2002) Cardiomyocytes of non cardiac origin in myocardial biopsies of human transplanted hearts. Circulation 106: 31–35

    PubMed  Google Scholar 

  • Murohara T, Ikeda H, Duan J et al (2000) Transplanted chord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105: 1527–1536

    PubMed  CAS  Google Scholar 

  • Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tools and controls. Cell 78: 915–918

    PubMed  CAS  Google Scholar 

  • Napoli C, Ignarro LJ (2001) Nitric oxide and atherosclerosis. Nitric Oxide 5:88–97 Nicklin SA, Buening H, Dishart KL et al (2001). Efficient and selective AAV-2 mediated gene transfer directed to human vascular endothelial cells. Mol Ther 4: 174–181

    Google Scholar 

  • Nishida T, Ueno H, Atsuchi N et al (1999). Adenovirus-mediated local expression of hu-man tissue factor pathway inhibitor eliminates shear-stress induced recurrent throm-bosis in the injured carotid artery of the rabbit. Circ Res 84: 1446–1452

    PubMed  CAS  Google Scholar 

  • Nozato T, Ito H, Watanabe M et al (2001) Overexpression of Cdk inhibitor p16 by adenovirus vector inhibits cardiac hypertrophy in vitro and in vivo: a novel strategy for the gene therapy of cardiac hypertrophy. J Mol Cell Cardiol 33: 1493–1504

    PubMed  CAS  Google Scholar 

  • Numaguchi Y, Naruse K, Harada M et al (1999) Prostacyclin synthase gene transfer accelerates reendothelialization and inhibits neointimal formation in rat carotid arteries after balloon injury. Arterioscler Throm Vasc Biol 19: 727–733

    CAS  Google Scholar 

  • Nuss, HB, Marban E, Johns DC (1999) Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J Clin Invest 103: 889–896

    PubMed  CAS  Google Scholar 

  • Oka K, Pastore L, Kim IH et al (2001) Long-term stable correction of low density lipoprotein receptor-deficient mice with a helper dependent adenoviral vector expressing the very low density lipoprotein receptor. Circulation 103: 1274–1281

    PubMed  CAS  Google Scholar 

  • Okudo S, Wildner O, Shah MR et al (2001) Gene transfer of heat shock protein 70 reduces infarct size in vivo after ischemia/reperfusion in the rabbit heart. Circulation 103: 877–881

    Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (200la) Bone marrow cells regenerate infarcted myocardium. Nature 410: 710–705

    Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001b) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98: 1034410349

    Google Scholar 

  • Orlic D, Hill JM, Arai AE (2002) Stem cells for myocardial regeneration. Circ Res 91: 1092–1102

    PubMed  CAS  Google Scholar 

  • Pachori AS, Numan MT, Ferrario CM et al (2002) Blood pressure-independent attenua-tion of cardiac hypertrophy by AT(1)R-AS gene therapy. Hypertension 20:969–975 Park JL, Lucchesi BR (1999) Mechanisms of myocardial reperfusion injury. Ann Thorac Surg 68: 1905–1912

    Google Scholar 

  • Pfeffer JM, Pfeffer MA, Fletcher PJ et al (1991) Progressive ventricular remodelling in rat myocardial infarction. Am J Physiol 260: H14106 - H1414

    Google Scholar 

  • Peterson JT, Li H, Dillon L et al (2000). Evolution of metlloprotease and tissue inhibitor expression during heart failure progression in the infarcted heart. Cardiovasc Res 46: 307–315

    PubMed  CAS  Google Scholar 

  • Poston RS, Tran KP, Mann MJ et al (1998) Prevention of ischemically-induced neointimal hyperplasia using ex vivo antisense oligodeoxynucleotides. J Heart Lung Transplant 17: 349–1355

    PubMed  CAS  Google Scholar 

  • Poston RS, Mann MJ, Hoyt EG et al (1999) Antisense oligodeoxynucleotides prevent acute cardiac allograft rejection via a novel, non-toxic, highly efficient transfection method. Transplantation 68: 825–832

    PubMed  CAS  Google Scholar 

  • Prentice H, Bishopric N, Hicks MN et al (1997) Regulated expression of a foreign gene targeted to the ischemic myocardium. Cardiovasc Res 35: 567–574

    PubMed  CAS  Google Scholar 

  • Qian H, Neplioueva V, Shetty GA et al (1999) Nitric oxide synthase gene therapy rapidly reduces molecule expression and inflammatory cell infiltration in carotid artery of cholesterol-fed rabbits. Circulation 99: 2979–2982

    PubMed  CAS  Google Scholar 

  • Quaini F, Urbanek K, Beltrami AP et al (2002) Chimerism of the transplanted heart. New Engl J Med 346: 5–15

    PubMed  Google Scholar 

  • Rader DJ, Tietge UJ (1999) Gene therapy for dyslipidemia: clinical prospects. Curr Atheroscler Rep 1: 58–69

    PubMed  CAS  Google Scholar 

  • Rebar EJ, Huang Y, Hickey R et al (2002) clnduction of angiogenesis in a mouse model using engineered transcription factors. Nature Medicine 8: 1427–1432

    Google Scholar 

  • Reinlib L, Field L (2000) Cell transplantation as future therapy for cardiovascular disease? Circulation 101: e192 - e197

    Google Scholar 

  • Rekhter MD, Simari RD, Work CW et al (1998) Gene transfer into normal and atherosclerotic human blood vessels. Circ Res 82: 1243–1252

    PubMed  CAS  Google Scholar 

  • Rentrop KP (2000). Thrombi in acute coronary syndromes. Revised and revisited. Circulation 101: 1619–1626

    PubMed  CAS  Google Scholar 

  • Rinaldi M, Catapano AL, Parrella P et al (2000) Treatment of severe hypercholesterolemia in apolipoprotein E-deficient mice by intramuscular injection of plasmid DNA. Gene Ther 7: 1795–1801

    PubMed  CAS  Google Scholar 

  • Robbins PD, Ghivizzani SC (1998) Viral vectors for gene therapy. Pharmacol. Ther. 80: 35–47

    Google Scholar 

  • Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane spanning receptors and heart function. Nature 415: 206–212

    PubMed  CAS  Google Scholar 

  • Rosengart TK, Lee LY, Patel SR et al (1999) Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100: 468–474

    PubMed  CAS  Google Scholar 

  • Roth DM, Gao MH, Lai C et al (1999) Cardiac-directed adenylyl cyclase expression im-proves heart function in murine cardiomyopathy. Circulation 99: 3099–3102

    PubMed  CAS  Google Scholar 

  • Roth DM, Bayat H, Drumm JD et al (2002) Adenylyl cyclase increases survival in cardio-myopathy. Circulation 105: 1989–1994

    PubMed  CAS  Google Scholar 

  • Sabaaway HE, Zhang F, Nguyen X et al (2001) Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats. Hypertension 38: 210–215

    Google Scholar 

  • Sakoda T, Kasahara N, Hamamori Yet al (1999) A high titer lentiviral production system mediates transduction of differentiated cells including beating cardiac myocytes. J Mol Cell Cardiol 31: 2037–2047

    PubMed  CAS  Google Scholar 

  • Sayeed-Shah U, Mann MI, Martin J (1998) Complete reversal of ischemic wall motion abnormalities by combined use of gene therapy with transmyocardial laser revascularization. J Thorac Cardiovasc Surg 116: 763–769

    PubMed  CAS  Google Scholar 

  • Schlesinger S (2001) Alphavirus vectors: development and potential therapeutic applications. Expert Opin Biol Ther 1: 177–191

    PubMed  CAS  Google Scholar 

  • Schmidt U, Hajjar RJ, Helm PA et al (1997) Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic function in human heart failure. J Mol Cell Cardiol 30: 1929–1937

    Google Scholar 

  • Schmidt U, del Monte F, Miyamoto MI et al (2000) Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca2+-ATPase. Circulation 101: 790–796

    PubMed  CAS  Google Scholar 

  • Schratzberger P (2001) Ultrasound enhances therapeutic gene expression in ischemic pig myocardium. J Am Coll Cardiol 37: 266A

    Google Scholar 

  • Schwartz RS (1998) Pathophysiology of restenosis: Interaction of thrombosis, hyperplasia, and/or remodeling. Am J Cardiol 81 (7A): 14E - 17E

    PubMed  CAS  Google Scholar 

  • Shah AS, Lilly RE, Kypson AP et al (2000) Intracoronary adenovirus-mediated delivery and overexpression of the beta(2)-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation 101: 408–414

    PubMed  CAS  Google Scholar 

  • Shah AS, White DC, Emani S et al (2001) In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac expression. Circulation 103: 1311–1316

    PubMed  CAS  Google Scholar 

  • Shears II LL, Kawaharada N, Tzeng E et al (1997) Inducible nitric oxide synthase suppresses the development of allograft atherosclerosis. J Clin Invest 100: 2035–2042

    PubMed  CAS  Google Scholar 

  • Shi Y, Fard A, Galeo A et al (1994) Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a porcine model of coronary artery balloon injury. Circulation 90:944–951 (1998) Evidence for circulating bone marrow derived endothelial cells. Blood 92: 362–367

    Google Scholar 

  • Shibata T; Giaccia AJ; Brown JM (2000) Development of a hypoxia-responsive vector for tumour-specific gene therapy. Gene Ther 7: 493–498

    PubMed  CAS  Google Scholar 

  • Shintani S, Murohara T, Ikeda H et al (2001) Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103: 897–903

    PubMed  CAS  Google Scholar 

  • Shohet RV, Chen S, Zhou Y-T et al (2000) Echo cardiographic destruction of albumin mi- croobubbles directs gene delivery to the myocardium. Circulation 101: 2554–2556

    PubMed  CAS  Google Scholar 

  • Schuster MD, Kocher A, John R et al (2001) Stromal derived growth factor (SDF)-1 augments myocardial neovascularization and cardiomycyte regeneration induced by human bone marrow angioblasts. Circulation 106 (Suppl II): II - 65

    Google Scholar 

  • Shyu KG, Wang MT, Wang BW et al (2002) Intrmyocardial injection of naked DNA encoding HIF-la/VP16 hybrid to enhnance angiogenesis in an acute myocardial infarction model in the rat. Caridovasc Res 54: 576–583

    CAS  Google Scholar 

  • Simons M, Edeelman ER, DeKeyser JL et al (1992). Antisense c-myb oligonucleotides in-hibit intimal arterial smooth muscle accumulation in vivo. Nature 359:67–70 3S - 9S.

    Google Scholar 

  • Singal PK, Khaper N, Palace Vet al (1998) The role of oxidative stress in the genesis of heart disease. Cardiovasc Res 40: 436–442

    Google Scholar 

  • Song YK, Liu F, Chu S et al (1997) Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration. Human Gene Ther 8: 1585–1594

    CAS  Google Scholar 

  • Soonpaa MH, Field L (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83: 15–26

    PubMed  CAS  Google Scholar 

  • Spinale FG (2002) Matrix metelloproteinases. Regulation and dysregulation in the failing heart Circ Res 90: 520–530

    CAS  Google Scholar 

  • Sposito AC, Chapman MJ (2002) Statin therapy in acute coronary syndromes: mechanis-tic insight into clinical benefit. Arterioscl Throm Vasc Biol 22: 1524–1534

    CAS  Google Scholar 

  • Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development Nature 407: 221–226

    CAS  Google Scholar 

  • Stamm C, Westphal B, Kleine H-D et al (2003) Autologous bone marrow stem cell transplantation for myocardial regeneration. Lancet 361: 45–46

    PubMed  Google Scholar 

  • St. John Sutton MG, Sharpe N (2000) left ventricular remodeling after myocardial infarction. Pathophysiology and therapy. Circulation 101: 2981–2988

    Google Scholar 

  • Steg PG, Tahlil O’Aubailly N, Caillaud JM et al (1997) Reduction of restenosis after angioplasty in an atheromatous rabbit model by suicide gene therapy. Circulation 96: 408411

    Google Scholar 

  • Stein EA (2002) Identification and treatment of individuals at high risk of coronary artery disease. Am J Med 112 (8A): 3S - 9S

    PubMed  Google Scholar 

  • Stepkowski SM (2000) Development of antisense oligodeoxynucleotides for transplantation. Curr Opin Mol Ther 2: 304–317

    PubMed  CAS  Google Scholar 

  • Strauer BE, Brehm M, Zeus T et al (2001) Myocardial regeneration after intracoronary transplantation of human autologous stem cells following acute myocardial infarction. Dtsch Med Wochenschr 126: 932–938

    PubMed  CAS  Google Scholar 

  • Strauer BE, Brehm M, Zeus T et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106: 1913–1918

    PubMed  Google Scholar 

  • Su H, Arakawa-Hoyt J, Kan YW (2002) Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proc Natl Acad Sci USA 99: 9480–9485

    PubMed  CAS  Google Scholar 

  • Suzuki K, Sawa Y, Kaneda Y (1997). In vivo gene transfer of heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J Clin Invest 99: 1645–1650

    PubMed  CAS  Google Scholar 

  • Svensson EC, Marshall DJ, Woodard K et al (1999) Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 99: 201–205

    PubMed  CAS  Google Scholar 

  • Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiological Reviews 79: 215–262

    PubMed  CAS  Google Scholar 

  • Sylven C, Sarkar N, Insulander P et al (2002) Catheter-based transendocardial myocardial gene transfer. J Intery Cardiol 15: 7–13

    Google Scholar 

  • Symes JF, Losordo DW, Vale PR et al (1999) Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann. Thorac Surg 68: 830–837

    Google Scholar 

  • Tabata H, Silver M, Isner JM (1997) Arterial gene transfer of acidic fibroblast growth factor for therapeutic angiogenesis in vivo: critical role of secretion signal in use of naked DNA. Cardiovasc Res 25: 470–479

    Google Scholar 

  • Taigen T, Windt LJ, Lim HW et al (2000) Targeted inhibition of calcineurin prevents ago- nist-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 97: 1196–1201

    PubMed  CAS  Google Scholar 

  • Tamamori M, Ito H, Hiroe M et al (1998) Essential roles for G1 cyclin-dependent kinase activity in development of cardiomyocyte hypertrophy. Am J Physiol 275: H2036 - H2040

    PubMed  CAS  Google Scholar 

  • Tang X, Mohuczy D, Zhang CY et al (1999) Intravenous angiotensinogen antisense in AAV-based vector decreases hypertension. Am J Physiol 277: H2392 - H2399

    PubMed  CAS  Google Scholar 

  • Tangirala RK, Tsukamoto K, Chun SH et al (1999) Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-1 in mice. Circulation 100: 1816–1822

    PubMed  CAS  Google Scholar 

  • Taniyama Y, Morishita R, Aoki M et al (2002) Angiogenesis and antifibrotic action by hepatocyte growth factor in cardiomyopathy. Hypertension 40: 47–53

    PubMed  CAS  Google Scholar 

  • Taylor DA, Atkins BZ, Hungspreugs P et al (1998) Regenerating functional myocardium: improves performance after skeletal myoblast transplantation. Nat Med 4: 929–933

    PubMed  CAS  Google Scholar 

  • Taylor DA, Hruban R, Rodriguez R et al (2002) Cardiac chimerism as a mechanism for self-repair. Does it happen and if so to what degree. Circulation 106: 2–4

    Google Scholar 

  • Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of oth-er cells by spontaneous cell fusion. Nature 416: 542–544

    PubMed  CAS  Google Scholar 

  • Tio RA, Tkebuchava T, Scheurermann TH et al (1999) Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral blood flow to ischemic myocardium. Human Gene Ther 10: 2953–2960

    CAS  Google Scholar 

  • Toma C, Pittenger MF, Cahill KS et al (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105: 93–98

    PubMed  Google Scholar 

  • Tomaiyasu K, Oda Y, Nomura M et al (2000) Direct intra-cardiomuscular transfer of ß2-adrenergic receptor gene augments cardiac output in cardiomyophatic hamsters Gene Ther 7: 2087–2093

    Google Scholar 

  • Tornita S, Li RK, Weisel RD et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100 (Suppl): II-247-II256

    Google Scholar 

  • Towbin JA, Bowles NE (2002) The failing heart. Nature 415: 227–233

    PubMed  CAS  Google Scholar 

  • Trono D (2000) Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther 7: 20–23

    PubMed  CAS  Google Scholar 

  • Tulis DA, Durante W, Liu X et al (2001) Adenovirus-mediated heme oxygenase-1 gene delivery inhbits injury-induced vascular neointima formation. Circulation 104: 2710–2715

    PubMed  CAS  Google Scholar 

  • Tzeng E, Shears LL, Robbins PD et al (1996) Vascular gene transfer of the human inducible nitric oxide synthase: characterization of activity and effects of myointimal hyperplasia. Mol Med 2: 211–215

    PubMed  CAS  Google Scholar 

  • Ueda H, Sawa Y, Matsumoto K et al (1999) Gene transfection of hepatocyte growth factor attenuates reperfusion injury in the heart. Ann Thorac Surg 67: 1726–1731

    PubMed  CAS  Google Scholar 

  • Ueno H, Li JJ, Masuda S, Qi Z et al (1997) Adenovirus-mediated expression of the secreted form of basic fibroblast groeth factor (FGF-2) induces cellular proliferation and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 17: 2453–2460

    PubMed  CAS  Google Scholar 

  • Vale PR, Losordo DW, Milliken CE et al (2001) Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103: 2138–2143

    PubMed  CAS  Google Scholar 

  • Van Belle E, Maillard L, Tio FO et al (1997) Accelerated endothelialization by local delivery of recombinant human vascular endothelial growth factor reduces in-stent intimal formation. Biochem Biophys Res Commun 235: 311–316

    PubMed  Google Scholar 

  • Van der Heide RS (2002) Increased expression of HSP27 protects canine myocytes from simulated ischemia-reperfusion injury Am J Physiol 282: H935 - H941

    Google Scholar 

  • Vasa M, Fichtscherer S, Aicher A et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89: E1 - E7

    PubMed  CAS  Google Scholar 

  • Vasa M, Fichtlschrerer S, Adler K et al (2001) Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103: 2885–2890

    PubMed  CAS  Google Scholar 

  • Vincent KA, Shyu K-G, Luo Y et al (2000) Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-la/VP16 hybrid transcription factor. Circulation 102: 2255–2261

    PubMed  CAS  Google Scholar 

  • Von der Leyen HE, Gibbons GH, Morishita R et al (1995) Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 92: 1137–1141

    PubMed  Google Scholar 

  • Von der Leyen HE, Dzau VJ (2001) Therapeutic potential of nitric oxide synthase gene manipulation. Circulation 103: 2760–2765

    PubMed  Google Scholar 

  • Walter DH, Rittig K, Bahlmann FH et al (2002) Stalin therapy accelerates reendothelialization: a novel effect involving mobilization and incroporation of bone marrow-derived endothelial progenitor cells. Circulation 105: 3017–3024

    PubMed  CAS  Google Scholar 

  • Wang H, Katovich MJ, Gelband CH et al (1999) Sustained inhibition of angiotensin I converting enzyme ( ACE) expression and long-term antihypertensive action by virally mediated delivery of ACE antisense cDNA. Circ Res 85: 614–622

    Google Scholar 

  • Wang J-S, Shum-Tim D, Chedrawy E et al (2001) The coronary delivery of marrow stromal cells for myocardial regeneration: Pathophysiological and therapeutic implications. J Thorac Cardiovasc Surg 122: 699–705

    Google Scholar 

  • Ware JH, Simons M (1997) Angiogenesis in ischemic heart disease. Nature Medicine 3: 158–164

    PubMed  CAS  Google Scholar 

  • Waugh JM, Kattash M, Li J et al (1999a) Gene therapy to promote thromboresistance: Local overexpression of tissue plasminogen activator to prevent arterial thrombosis in an vivo rabbit model. Proc Natl Acad Sci USA 96: 1065–1070

    Google Scholar 

  • Waugh JM, Yuksel E, Li J et al (1999b) Local overexpression of thrombomodulin for in vivo prevention of arterial thrombosis in a rabbit model. Circ Res 84: 84–92

    PubMed  CAS  Google Scholar 

  • Williams RS, Benjamin IJ (2000) Protective responses of the ischemic myocardium. J Clin Invest 106: 813–818

    PubMed  CAS  Google Scholar 

  • Wilson PWF, D’Agostino RB, Levy D et al (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97: 1837–1847

    PubMed  CAS  Google Scholar 

  • Woo YZ, Zhang JC, Vijayasarathy C et al (1998). Recombinant adenovirus-mediated cardiac gene transfer of superoxide dismutase and catalase attenuates postischemic contractile dysfunction. Circulation 98 (Suppl):II255–II260

    Google Scholar 

  • Wright MJ, Wightman, LML, Lilley C et al (2001) In vivo myocardial gene transfer: Optimization, evaluation and direct comparison of gene transfer vectors. Bas Res Cardiol 96: 227–236

    Google Scholar 

  • Yamamoto N, Kohmoto T, Roethy W et al (2000) Histological evidence that fibroblast growth factor enhances the angiogenic effects of transmyocardial laser revascularization. Basic Res Cardiol 95: 55–63

    PubMed  CAS  Google Scholar 

  • Yan Z, Zhang Y, Duan D et al (2000) Trans-splicing vectors expand the utility of adenoassociated virus for gene therapy. Proc Natl Acad Sci USA 97: 6716–6721

    PubMed  CAS  Google Scholar 

  • Yang Z, Bove CM, French BA et al (2002) Angiotensin II type 2 receptor overexpression preserves left ventricular function after myocardial infarction. Circulation 106: 106–111

    PubMed  CAS  Google Scholar 

  • Yang Z, Cerniway RJ, Byford AM (2002) Cardiac overexpression of Al-adenosine receptor protects intact mice against myocardial infarction. Am J Physiol 282: H949 - H955

    CAS  Google Scholar 

  • Yasue H, Kugiyama K (1997) Coronary spasm: clinical features and pathogenesis. Intern Med 36: 760–765

    PubMed  CAS  Google Scholar 

  • Yasue H, Kugiyama K (1997) Coronary spasm: clinical features and pathogenesis. Intern Med 36: 760–765

    PubMed  CAS  Google Scholar 

  • Yellon DM, Baxter GF (2000) Reperfusion injury revisited. Is there a role for growth fac-tor signalling in limiting lethal reperfusion injury? Trends Cardiovasc Med 9: 245–249

    Google Scholar 

  • Ying Q-L, Nichols J, Evans EP et al (2002) Changing potency by spontaneous fusion. Na-ture 416: 545–547

    CAS  Google Scholar 

  • Yonemitsu Y, Kaneda Y, Tanaka S et al (1998) Transfer of wild-type p53 gene effectively inhibits vascular smooth muscle proliferation in vitro and in vivo. Circ Res 82: 147156

    Google Scholar 

  • Yoshida T, Watanabe M, Engelman DT et al (1996) Transgenic mice overespressing glutathione peroxidase are resistant to myocardial reperfusion injury. J Mol Cell Cardiol 28: 1759–1767

    PubMed  CAS  Google Scholar 

  • Yoshida H, Zhang JJ, Chao L et al (2000) Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Hypertension 35: 25–31

    PubMed  CAS  Google Scholar 

  • Zhang M, Methot D, Poppa V et al (2001) Cardiac myocyte grafting for cardiac repair: Graft cell death and anti-death strategies. J Mol Cell Cardiol 33: 907–921

    Google Scholar 

  • Zhang YC, Kimura B, Shen L et al (2000) New /3-blocker: Prolonged reduction in high blood pressure with (31 antisense oligodeoxynucleotides. Hypertension 35: 219–224

    CAS  Google Scholar 

  • Zhao J, Pettigrew GJ, Thomas J et al (2002) Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res Cardiol 97: 348–358

    PubMed  CAS  Google Scholar 

  • Zhu HL, Stewart AS, Taylor MD (2000) Blocking free radical production via adenoviral gene transfer decreases cardiac ischemia-reperfusion injury. Mol Ther 2: 470–475

    PubMed  CAS  Google Scholar 

  • Zoldhelyi P, McNatt J, Xu XM et al (1996) Prevention of arterial thrombosis by adenovi-rus-mediated transfer of cyclooxygenase gene. Circulation 93: 10–17

    PubMed  CAS  Google Scholar 

  • Zoldhelyi P, McNatt J, Shelat HS et al (2000) Thromboresistance of balloon-injured porcine carotid arteries after local gene transfer of human tissue factor pathway inhibitor. Circulation101: 289–295

    Google Scholar 

  • Zsigmond E, Kobayashi K, Tzung KW et al (1997) Adenovirus-mediated gene transfer of human lipoprotein lipase ameliorates the hyperlipidemias associated with apolipoprotein E and LDL receptor deficiencies in mice. Hum Gene Ther 8: 1921–1933

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melo, L.G., Pachori, A.S., Kong, D., Dzau, V.J. (2004). Current Perspectives on Gene and Cell-Based Therapies for Myocardial Protection, Rescue and Repair. In: Wilkins, M.R. (eds) Cardiovascular Pharmacogenetics. Handbook of Experimental Pharmacology, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06214-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06214-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07291-8

  • Online ISBN: 978-3-662-06214-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics