Basic Characteristics and Ion Binding to Calreticulin

  • Shairaz Baksh
  • Marek Michalak
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Calreticulin is a protein that binds several different cations. In particular, this protein has been shown to have two distinct Ca2+ binding sites: a high capacity, low affinity site and a high affinity, low capacity site.1,2 Because of its high capacity for Ca2+ binding (>20 moles of Ca2+/mole of protein), it has been proposed that calreticulin may be a Ca2+ storage protein.3 This possibility is reviewed, in detail, in Chapter 5. However, in addition to this potential role in Ca2+ storage, several other diverse functions have been proposed for calreticulin (see other chapters in this book).4

Keywords

Cobalt Serine Proline Polypeptide Luminal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ostwald TJ, MacLennan DH. Isolation of a high affinity calcium binding protein from sarcoplasmic reticulum. J Biol Chem 1974; 249: 974–979.PubMedGoogle Scholar
  2. 2.
    Baksh S, Michalak M. Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 1991; 266: 21458–21465.PubMedGoogle Scholar
  3. 3.
    Michalak M, Milner RE, Burns K, Opas M. Calreticulin. Biochem J 1992; 285: 681–692.PubMedGoogle Scholar
  4. 4.
    Nash PD, Opas M, Michalak M. Calreticulin: not just another calcium binding protein. Mol Cell Biochem 1994; 135: 71–78.PubMedCrossRefGoogle Scholar
  5. 5.
    Milner RE, Baksh S, Shemanko C et al. Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem 1991; 266: 7155–7165.PubMedGoogle Scholar
  6. 6.
    Fliegel L, Burns K, MacLennan DH et al. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 1989; 264: 21522–21528.PubMedGoogle Scholar
  7. 7.
    Rokeach LA, Haselby JA, Meilof JF et al. Characterization of the autoantigen calreticulin. J Immunol 1991; 147: 3031–3039.PubMedGoogle Scholar
  8. 8.
    Smith MJ, Koch GLE. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP) a major calcium binding ER/SR protein. EMBO J 1989; 8: 3581–3586.PubMedGoogle Scholar
  9. 9.
    Pelham HRB. Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 1989; 5: 1–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Sönnichsen B, Füllekrug J, Van PN et al. Retention and retrieval: both mechanisms cooperate to maintain calreticulin in the endoplasmic reticulum. J Cell Sci 1994; 107: 2705–2717.PubMedGoogle Scholar
  11. 11.
    Watanabe D, Yamada K, Nishina Y et al. Molecular cloning of a novel Ca2+-binding protein (calmegin) specifically expressed during male meiotic germ cell development. J Biol Chem 1994; 269: 7744–7749.PubMedGoogle Scholar
  12. 12.
    Matsuoka K, Seta K, Yamakawa Y et al. Covalent structure of bovine brain calreticulin. Biochem J 1994; 298: 435–442.PubMedGoogle Scholar
  13. 13.
    Waisman DM, Salimath BP, Anderson MJ. Isolation and characterization of CAB-63, a novel calcium-binding protein. J Biol Chem 1985; 260: 1652–1660.PubMedGoogle Scholar
  14. 14.
    Van PN, Peter F, Söling H-D. Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. J Biol Chem 1989; 264: 17494–17501.PubMedGoogle Scholar
  15. 15.
    Jethmalani SM, Henle KJ, Kaushal GP. Heat shock-induced prompt glycosylation. Identification of P-SG67 as calreticulin. J Biol Chem 1994; 269: 23603–23609.PubMedGoogle Scholar
  16. 16.
    Houen G, Koch C. Human placenta calreticulin: purification, characterization and association with other proteins. Acta Chem Scand 1994; 48: 905–911.PubMedCrossRefGoogle Scholar
  17. 17.
    Singh NK, Rouault TA, Liu TY et al. Calreticulin is an RNA binding phosphoprotein which interacts with the 3’cis-acting element of rubella virus RNA. Proc Natl Acad Sci USA 1994; 91: 12770–12774PubMedCrossRefGoogle Scholar
  18. 18.
    Rojiani MV, Finlay BB, Gray V et al. In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin a subunits. Biochemistry 1991; 30: 9859–9865.PubMedCrossRefGoogle Scholar
  19. 19.
    Leung-Hagesteijn CY, Milankov K, Michalak M et al. Integrinmediated cell attachment to extracellular matrix substrates is inhibited upon downregulation of expression of calreticulin, an intracellular integrin a-subunit binding protein. J Cell Sci 1994; 107: 589–600.PubMedGoogle Scholar
  20. 20.
    Peter FP, Van NP, Söling H-D. Different sorting of Lys-Asp-GluLeu proteins in rat liver. J Biol Chem 1992; 267: 10631–10637.PubMedGoogle Scholar
  21. 21.
    MacLennan DH, Campbell KP, Reithmeier RAF. Calsequestrin. In: Cheng WY, ed. Academic Press: Orlando, FL, 1983; 151–173.Google Scholar
  22. 22.
    Conrad ME, Umbreit JN, Moore EG et al. Mobilferrin, a homologue of Ro/SS-A autoantigen and calreticulin. Blood 1991; 78: 89a.Google Scholar
  23. 23.
    Fliegel L, Burns K, Wlasichuk K et al. Peripheral proteins of sarcoplasmic and endoplasmic reticulum. Biochem Cell Biol 1989; 67: 696–702.PubMedCrossRefGoogle Scholar
  24. 24.
    Mazzarella RA, Green M. ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum, is homologous to the 90-kDa heat shock protein (hsp90) and the 94-kDa glucose regulated protein (GRP94). J Biol Chem 1987; 262: 8875–8883.PubMedGoogle Scholar
  25. 25.
    Mazzarella RA, Srinivasan M., Haugejorden SM et al. Erp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase. J Biol Chem 1990; 265: 1094–1101.PubMedGoogle Scholar
  26. 26.
    Michalak M, Milner RE. Calreticulin-a functional analogue of calsequestrin? Basic App Myol 1991; 1: 121–128.Google Scholar
  27. 27.
    Unnasch TR, Gallin MY, Soboslay PT et al. Isolation and characterization of expression cDNA clones encoding antigens of Onchocerca volvulus infective larvae. J Clin Invest 1988; 82: 262–269.PubMedCrossRefGoogle Scholar
  28. 28.
    Bergeron JGM, Brenner MB, Thomas DY et al. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. TIBS 1994; 19: 124–128.PubMedGoogle Scholar
  29. 29.
    Tjoelker LW, Seyfried CE, Eddy RL Jr et al. Human, mouse, and rat calnexin cDNA cloning: Identification of potential calcium binding motifs and gene localization to human chromosome 5. Biochemistry 1994; 33: 3229–3236.PubMedCrossRefGoogle Scholar
  30. 30.
    Malhotra R, Willis AD, Jensenius JC et al. Structure and homology of human Clq receptor (collectin receptor). Immunol 1993; 78: 341–348.Google Scholar
  31. 31.
    Nigam SK, Goldberg AL, Ho S et al. A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca2+-binding proteins and members of the thioredoxin superfamily. J Biol Chem 1994; 269: 1744–1749.PubMedGoogle Scholar
  32. 32.
    Neusfee WM, McCormick SJ, Clark RA. Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J Biol Chem 1995; 270: 4741–4747.CrossRefGoogle Scholar
  33. 33.
    Liu N, Fine RE, Johnson RJ. Comparison of cDNA from bovine brain coding for two isoforms of calreticulin. Biochim Biophys Acta 1993; 1202: 70–76.PubMedCrossRefGoogle Scholar
  34. 34.
    Ohnishi M, Reithmeier RAF. Fragmentation of rabbit skeletal muscle calsequestrin: spectral and ion binding properties of the carboxyl-terminal region. Biochemistry 1987; 26: 7458–7465.PubMedCrossRefGoogle Scholar
  35. 35.
    Kennedy TE, Kuhl D, Barzilai A et al. Long-term sensitization training in aplysia leads to an increase in calreticulin, a major presynaptic calcium binding protein. Neuron 1992; 9: 1013–1024.PubMedCrossRefGoogle Scholar
  36. 36.
    Nakamura M, Moriya M, Baba T et al. An endoplasmic reticulum protein, calreticulin, is transported into the acrosome of rat sperm. Exp Cell Res 1993; 205: 101–110.PubMedCrossRefGoogle Scholar
  37. 37.
    Davies TW. Schistosoma mansoi: the structure and elemental corn-position of the pre-acetabullar penetration gland cell secretion in pre-emergent cercariae. Parasitology 1983; 87:55–60.CrossRefGoogle Scholar
  38. 38.
    Khalife J, Liu JL, Pierce R et al. Characterization and localization of Schistosoma mansoni calreticulin Sm58. Parasitology 1994; 108: 527–532.PubMedCrossRefGoogle Scholar
  39. 39.
    Hawn TR, Tom TD, Strand M. Molecular expression of SmIrV1, a Schistosoma mansoni antigen with similarity to calnexin, calreticulin, and OvRall. J Biol Chem 1993; 268: 7692–7698.PubMedGoogle Scholar
  40. 40.
    Kretsinger RH, Moncrief ND, Goodman M et al. Homology of calcium modulated proteins: their evolutionary and functional relationships. In: Monrad M, Naylor WG, Kazda S, Schramm M, ed. The calcium channel, structure, function and implication. Springer-Verlag, 1988; 16–34.Google Scholar
  41. 41.
    Khanna NC, Takuda M, Waisman DM. Conformational changes induced by binding of divalent cations to calregulin. J Biol Chem 1986; 261: 8883–8887.PubMedGoogle Scholar
  42. 42.
    Heilmann C, Spamer C, Leberer E et al. Human liver calreticulin. Characterization and Zn2+-dependent interaction with phenylSepharose. Biochem Biophys Res Commun 1993; 193: 611–616.PubMedCrossRefGoogle Scholar
  43. 43.
    Wada I, Rindress D, Cameron P et al. SSRa and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 1991; 266: 19599–19610.PubMedGoogle Scholar
  44. 44.
    De Virgilio C, Bürckert N, Neuhaus J-M et al. CNE1, a Saccharomyces cerevisiae homologure of the genes encoding mammalian calnexin and calreticulin. Yeast 1993; 9: 185–188.PubMedCrossRefGoogle Scholar
  45. 45.
    Parlati F, Dominigues M, Bergeron JJM et al. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J Biol Chem 1995; 270: 244–253.PubMedCrossRefGoogle Scholar
  46. 46.
    Jannatipuor M, Rokeach LA. The Schizosaccharomyces pombe homologue of the chaperone calnexin is essential for viability. J Biol Chem 1995; 270: 4845–4853.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Shairaz Baksh
  • Marek Michalak

There are no affiliations available

Personalised recommendations