Advertisement

Hamilton-Jacobi Theory and Canonical Transformations

  • Mariano Giaquinta
  • Stefan Hildebrandt
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 311)

Abstract

In this chapter we want to present the basic features of the Hamilton—Jacobi theory, the centerpiece of analytical mechanics, which has played a major role in the development of the mathematical foundations of quantum mechanics as well as in the genesis of an analysis on manifolds. This theory is not only based on the fundamental work of Hamilton and Jacobi, but it also incorporates ideas of predecessors such as Fermat, Newton, Huygens and Johann Bernoulli among the old masters and Euler, Lagrange, Legendre, Monge, Pfaff, Poisson and Cauchy of the next generations. In addition the contributions of Lie, Poincaré and E. Cartan had a great influence on its final shaping.

Keywords

Vector Field Hamiltonian System Poisson Bracket Symplectic Manifold Canonical Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mariano Giaquinta
    • 1
  • Stefan Hildebrandt
    • 2
  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Mathematisches InstitutUniversität BonnBonnGermany

Personalised recommendations