Skip to main content

Rapid-Cycling Brassica in Research and Education

  • Chapter
Brassica

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 54))

Abstract

Over the past 25 years, rapid-cycling Brassica (RCBr) stocks developed from six species have become important model organisms for research and education. Researchers and educators turn to RCBr lines for their short generation time, small size and their relevance to commercial Brassica varieties. The Wisconsin Fast Plants (WFP) Program, which utilizes RC B. rapa, has allowed millions of students to observe a complete plant life cycle while answering experimental questions about plant development, physiology, genetics and ecology. There is an increasing need for tools that will allow educators to help students bridge the conceptual gap between classical genetics and genomics. Here, we suggest that RCBr may be well suited for this role.We will discuss both research and educational applications of RCBr side by side, reflecting our belief that there need be little distance between these two important pursuits.We hope that examples presented here convince researchers studying the Brassicaceae that many discoveries can be adapted for educational use. Combining research and education can be professionally satisfying to a scientist. Also, funding agencies have increased interest in projects with meaningful educational components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blakeslee AD (1941) Effect of induced polyploidy in plants. Am Nat 75: 117–135

    Article  Google Scholar 

  • Cavan G, Cussans J, Moss S (2001) Managing the risks of herbicide resistance in wild oat. Weed Sci 49: 236–240

    Article  CAS  Google Scholar 

  • Charron CS, Kopsell DA, Randle WM, Sams CE (2001) Sodium selenate fertilisation increases selenium accumulation and decreases glucosinolate concentration in rapid-cycling Brassica oleracea. J Sci Food Agric 81: 962–966

    Article  CAS  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK Jr, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97: 9323–9328

    Article  PubMed  CAS  Google Scholar 

  • Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43: 387–399

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12: 1551–1568

    PubMed  CAS  Google Scholar 

  • Devine MD, Shukla A (2000) Altered target sites as mechanisms of herbicide resistance. Crop Protection 19: 881–889

    Article  CAS  Google Scholar 

  • de Vries J, Wackernagel W (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol Gen Genet 257: 606–613

    Article  PubMed  Google Scholar 

  • Friend DJC, Helson VA (1966) Brassica campestris L.: floral induction by one long day. Science 153: 1115–1116

    Google Scholar 

  • Gomez-Campo C (1999) Biology of crassica coenospecies, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Hall AE, Fiebig A, Preuss D (2002) Beyond the Arabidopsis genome: opportunities for comparative genomics. Plant Physiol 129: 1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Jensen EB, Felkl G, Kristiansen K, Andersen SB (2002) Resistance to the cabbage root fly, Delia radicum, within Brassica fruticulosa. Euphytica 124: 379–386

    Article  CAS  Google Scholar 

  • Jyoti JL, Shelton AM, Earle ED (2001) Identifying sources and mechanisms of resistance in crucifers for control of cabbage maggot ( Diptera: Anthomyiidae). J Econ Entomol 94: 942–949

    Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160: 1651–1659

    PubMed  CAS  Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4: 403–410

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz U, Lydiate D (1996) Comparative genome mapping in Brassica. Genetics 144: 1903–1910

    PubMed  CAS  Google Scholar 

  • Lan TH, Paterson AH (2000) Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea. Genetics 155: 1927–1954

    PubMed  CAS  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122: 1–25

    Article  Google Scholar 

  • Liu B, Wendel JF (2002) Non-Mendelian phenomenon in allopolyploid genome evolution. Curr Genom 3: 489–505

    Article  CAS  Google Scholar 

  • Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol 129: 733–746

    Article  PubMed  CAS  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants–evidence for polyploidy in the majority of angiosperms. Science 264: 421–424

    Article  PubMed  CAS  Google Scholar 

  • Maungprom A, Maureira IJ, Osborn TC (2002) Effects of a dwarf gene transferred from rapid cycling Brassica rapa to canola (B. napus). Paper presented at ASA, CSSA, SSSA Annual Meeting, Madison, WI

    Google Scholar 

  • Musgrave ME (2000) Realizing the potential of rapid-cycling Brassica as a model system for use in plant biology research. J Plant Growth Regul 19: 314–325

    Article  PubMed  CAS  Google Scholar 

  • Osborn TC, Pires JC, Auger DL, Chen ZJ, Lee H-S, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19: 141–147

    Article  PubMed  CAS  Google Scholar 

  • Rahman MH (2001) Inheritance of petal color and its independent segregation from seed color in Brassica rapa. Plant Breed 120: 197–200

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33: 589–639

    Article  Google Scholar 

  • Randolph LF (1941) An evaluation of induced polyploidy as a method of breeding crop plants. Am Nat 75: 347–363

    Article  Google Scholar 

  • Sebastian RL, Kearsey MJ, King GJ (2002) Identification of quantitative trait loci controlling developmental characteristics of Brassica oleracea L. Theor Appl Genet 104: 601–609

    Article  PubMed  CAS  Google Scholar 

  • Sleeman JD, Dudley SA (2001) Phenotypic plasticity in carbon acquisition of rapid-cycling Brassica rapa L. in response to light quality and water availability. Int J Plant Sci 162: 297–307

    Article  Google Scholar 

  • Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12: 243–273

    CAS  Google Scholar 

  • Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92: 8089–8091

    Article  PubMed  CAS  Google Scholar 

  • Stout SC, Porterfield DM, Briarty LG, Kuang A, Musgrave ME (2001) Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity. Int J Plant Sci 162: 249–255

    Article  PubMed  CAS  Google Scholar 

  • Teutonico RA, Osborn TC (1994) Mapping of RFLP and quantitative trait loci in Brassica rapa and comparison to linkage maps of B. napus, B. oleracea and Arabidopsis thaliana. Theor Appl Genet 89: 885–894

    CAS  Google Scholar 

  • Thomzik JE (1995) Agrobacterium-mediated transformation of stem disks from oilseed rape (Brassica napus L.). Methods Mol Biol 44: 79–85

    PubMed  CAS  Google Scholar 

  • Tsunoda S, Hinata K, Gomez-Campo C (eds) (1980) Brassica crops and wild alleles. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation B. napus and peculiar mode of fertilization. Jpn J Bot 7: 389–452

    Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42: 225–249

    Article  PubMed  CAS  Google Scholar 

  • Williams PH (1995) Exploring Wisconsin fast plants. Kendall/Hunt, Dubuque

    Google Scholar 

  • Williams PH, Hill CB (1986) Rapid-cycling populations of Brassica. Science 232: 1385–1389

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mysteries of diploidization. Nat Rev Genet 2: 333–341

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Himelblau, E., Lauffer, D., Teutonico, R., Pires, J.C., Osborn, T.C. (2004). Rapid-Cycling Brassica in Research and Education. In: Pua, EC., Douglas, C.J. (eds) Brassica. Biotechnology in Agriculture and Forestry, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06164-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06164-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05783-0

  • Online ISBN: 978-3-662-06164-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics