Skip to main content

Biochemical Genetics of Glucosinolate Biosynthesis in Brassica

  • Chapter
Brassica

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 54))

  • 518 Accesses

Abstract

Glucosinolates are the major class of secondary metabolites found in Brassica crops. The molecule comprises a β-thioglucose moiety, a sulphonated oxime moiety and a variable side chain, derived from one of several amino acids (Fig. 1). The economic importance of glucosinolates in Brassica crops is due to the biological activity of their degradation products, which include isothiocyanate, nitriles and a range of indole compounds (Figs. 2 and 3). These compounds are generated by the action of the endogenous plant enzyme myrosinase, or by thioglucosidases from gut microbes following consumption of intact glucosinolates. The nature and biological activity of these products is dependent on the glucosinolate chain structure, reviewed in detail below. The importance of these compounds is threefold. Firstly, certain degradation products reduce the nutritional quality of rape meal. This is largely due to 5-vinyloxazolidine2-thione (Fig. 2), derived from 2-hydroxy-3-butenyl glucosinolate (“progoitrin”), which, as the name suggests, has goitrogenic activity. Isothiocyanates and other glucosinolate-derived compounds can also reduce palatability of the meal. Secondly, isothiocyanates are important flavour compounds in cruciferous vegetable crops. These compounds, along with indolyl glucosinolate degradation products, have also been shown to have anticarcinogenic activity. Thirdly, isothiocyanate and other degradation products mediate plantherbivore and tritrophic interactions. This chapter concentrates on the genetic control of glucosinolate biosynthesis. Factors determining the nature of the degradation products and their biological activity have been reviewed elsewhere (Mithen 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bak S, Feyereisen R (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127: 108–118

    Article  PubMed  CAS  Google Scholar 

  • Bak S, Nielsen HL, Halkier BA (1998) The presence of CYP79 homologues in glucosinolateproducing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glycosides and glucosinolates. Plant Mol Biol 38: 725–734

    Article  PubMed  CAS  Google Scholar 

  • Bak S, Olsen CE, Petersen BL, Moller BL, Halkier BA (1999) Metabolic engineering of phydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor. Plant J 20: 663–671

    Article  PubMed  CAS  Google Scholar 

  • Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101–111

    PubMed  CAS  Google Scholar 

  • Bernardi R, Negri A, Ronchi S, Palmieri S (2000) Isolation of the epithiospecifier protein from oil-rape (Brassica napus ssp. oleifera) seed and its characterization. FEBS Lett 467: 296–298

    Article  PubMed  CAS  Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97: 194–208

    Article  CAS  Google Scholar 

  • Campos de Quiros H, Magrath R, McCallum D, Kroymann J, Scnabelrauch D, Mitchell-Olds T, Mithen R (2000) a-Keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana. Theor Appl Genet 101: 429–437

    Google Scholar 

  • Chapple CCS, Glover JR, Ellis BE (1990) Purification and characterisation of methionineglyoxalate aminotransferase from Brassica carinata and Brassica napus. Plant Physiol 94: 1887–1896

    Article  PubMed  CAS  Google Scholar 

  • Chisholm MD, Wetter LR (1964) Biosynthesis of mustard oil glucosides. IV. The administration of methionine-14C and related compounds to horseradish. Can J Biochem 42: 1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Downey RK, Craig BM, Young CG (1969). Breeding rapeseed for oil and meal quality. J Am Oil Chem Soc 46: 121–123

    Article  CAS  Google Scholar 

  • Du LC, Halkier BA (1998) Biosynthesis of glucosinolates in the developing walls and seeds of Sinapis alba. Phytochemistry 48: 1145–1150

    Article  CAS  Google Scholar 

  • Du LC, Lykkesfeldt J, Olsen CE, Halkier BA (1995) Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba. Proc Natl Acad Sci USA 92: 12505–2509

    Article  PubMed  CAS  Google Scholar 

  • Ettinger MG, Lundeen AJ (1956) The structure of sinigrin and sinalbin: an enzymic rearrangement. J Am Chem Soc 78: 4172–4173

    Article  Google Scholar 

  • Ettlinger MG, Lundeen AJ (1957) First synthesis of a mustard oil glucoside: the enzymatic Lossen arrangement. J Am Chem Soc 79: 1764–1765

    Article  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 5–51

    Article  PubMed  CAS  Google Scholar 

  • Faulkner K, Mithen RF, Williamson G (1998) Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis 19: 605–609

    Article  PubMed  CAS  Google Scholar 

  • Ferriera ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica napus using double-haploid lines. Theor Appl Genet 89: 615–621

    Google Scholar 

  • Fischer H, Chen L, Wallisch S (1996) The evolution of angiosperm seed proteins: a methioninerich legumin subfamily present in lower angiosperm clades. J Mol Evol 43: 399–404

    Article  PubMed  CAS  Google Scholar 

  • Foo HL, Grønning LM, Goodenough L, Bones AM, Danielsen B-E, Whiting DA, Rossiter JT (2000) Purification and characterisation of epithiospecifer protein from Brassica napus, enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett 468: 243–246

    Article  PubMed  CAS  Google Scholar 

  • Giamoustaris A, Mithen RF (1996) Genetics of aliphatic glucosinolates. IV. Side chain modifications in Brassica oleracea. Theor Appl Genet 93: 1006–1010

    Article  CAS  Google Scholar 

  • Graser G, Schneider B, ldham NJ, Gershenzon J (2000) The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa ( Brassicaceae ). Arch Biochem Biophys 378: 411–419

    Google Scholar 

  • GrootWassink JW, Reed W, Kolenovsky AD (1994) Immunopurification and immunocharacterisation of the glucosinolate biosynthesis enzyme thiohydroximate S-glucosyltransferase. Plant Physiol 105: 425–433

    PubMed  CAS  Google Scholar 

  • Hall C, McCallum D, Prescott A, Mithen R (2000) Biochemical genetics of glucosinolate chain modification in Arabidopsis and Brassica. Theor Appl Genet 102: 369–374

    Article  Google Scholar 

  • Hansen CH, Wittstock U, Olsen CE, Hick AJ, Pickett JA, Halkier BA (2001a) Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J Biol Chem 14: 11078–11085

    Article  Google Scholar 

  • Hansen CH, Du L, Naur P, Olsen CE,Axelsen KB, Hick AJ, Pickett JA, Halkier BA (2001b) CYP83B1 is the oxime-metabolising enzyme in the glucosinolate pathway in Arabidopsis. J Biol Chem 27: 24790–24796

    Google Scholar 

  • Haughn GW, Davin L, Giblin M, Underhill EW (1991) Biochemical genetics of plant secondary

    Google Scholar 

  • metabolism in Arabidopsis thaliana. The glucosinolates. Plant Physiol 97:217–226

    Google Scholar 

  • Heaney RK, Fenwick GR (1993) Methods for glucosinolate analysis. In: Waterman PG (ed)

    Google Scholar 

  • Methods for plant biochemistry. Academic Press, London, pp 531–550

    Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyse the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97: 2379–2384

    Google Scholar 

  • Josefsson E (1971) Studies of the biochemical background to differences in glucosinolate content in Brassica napus L. II. Administration of some sulphur-35 and carbon-14 compounds and localization of metabolic blocks. Physiol Plant 24: 161–175

    Article  CAS  Google Scholar 

  • Josefsson E (1973) Studies of the biochemical background to differences in glucosinolate content in Brassica napus L. III. Further studies to localize metabolic blocks. Physiol Plant 29: 28–32

    Article  CAS  Google Scholar 

  • Josefsson E, Appelqvist L-Ã (1968) Glucosinolates in seed of rape and turnip rape as affected by variety and environment. J Sci Food Agric 19: 564–570

    Article  CAS  Google Scholar 

  • Kahn RA, Fahrendorf T, Halkier BA, Moller BL (1999) Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin Sorghum bicolor ( L.) Moench. Arch Biochem Biophys 363: 9–18

    Google Scholar 

  • Kiddle GA, Bennett RN, Hick AJ, Wallsgrove RM (1999) C-S lyase activities in leaves of crucifers and non-crucifers, and the characterisation of three classes of C-S lyase activities from oilseed rape (Brassica napus L.). Plant Cell Environ 22: 433–445

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001a) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126: 811–825

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchell-Olds T (2001b) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 681–693

    PubMed  CAS  Google Scholar 

  • Kondra ZP, Stefansson BR (1970) Inheritance of the major glucosinolates of rapeseed (Brassica napus) meal. Can J Plant Sci 50: 643–647

    Article  CAS  Google Scholar 

  • Kroymann J, Textor S, Tokuhisa JG, Falk KL, Bartam S, Gershenzon J, Mitchell-Olds T (2001) A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol 127: 1077–1088

    Article  PubMed  CAS  Google Scholar 

  • Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541– 1548

    Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein D, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of the glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13: 2793–2807

    PubMed  CAS  Google Scholar 

  • Magrath R, Bano F, Morgner M, Parkin I, Sharpe A, Lister C, Dean C, Lydiate D, Mithen RF (1994) Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 72: 290–299

    Article  CAS  Google Scholar 

  • Matsuo M, Kirkland DF, Underhill EW (1972) 1-Nitro-2-phenylethane, a possible intermediate in the biosynthesis of benzylglucosinolate. Phytochemistry 11: 697–701

    Google Scholar 

  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyses the conversion of tryptophane to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275: 33712–33717

    Article  PubMed  CAS  Google Scholar 

  • Mithen RF (2001) Glucosinolates and their degradation products. Adv Bot Res 35:213–262 Mithen RF, Campos H (1996) Genetic variation of aliphatic glucosinolates in Arabidopsis thaliana and prospects for map based gene cloning. Entomol Exp Appl 80: 202–205

    Article  Google Scholar 

  • Mithen RF, Clarke J, Lister C, Dean C (1995) Genetics of aliphatic glucosinolates. III. Side chain modifications in Arabidopsis thaliana. Heredity 74: 210–215

    Article  CAS  Google Scholar 

  • Mithen RF, Faulkner K, Magrath R, Rose P, Williamson G, Marquez J (2003) Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor Appl Genet 106: 727–734

    PubMed  CAS  Google Scholar 

  • Parkin I, Magrath R, Keith D, Sharpe A, Mithen RF, Lydiate D (1994) Genetics of aliphatic glucosinolates. II. Hydroxylation of alkenyl glucosinolates in Brassica napus. Heredity 72: 594–598

    Article  CAS  Google Scholar 

  • Rask L, Andréasson E, Ekbom B, Erksson S, Pontoppidan B, Meijer J (2000) Myrosinase, gene family evolution and herbivore defence in Brassicaceae. Plant Mol Biol 42: 92–113

    Article  Google Scholar 

  • Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K (2001) bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13: 351–367

    Google Scholar 

  • Rodman JE, Soltis PS, Soltis DE, Sytsma KJ, Karol KG (1998) Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am J Bot 85: 997–1006

    Article  PubMed  CAS  Google Scholar 

  • Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet 100: 75–81

    Article  CAS  Google Scholar 

  • Strassman M, Ceci LN (1963) Enzymic formation of a-isopropylmalic acid, an intermediate in leucine biosynthesis. J Biol Chem 238: 2445–2452

    PubMed  CAS  Google Scholar 

  • Tookey HL (1973) Separation of a protein required for epithiobutane formation. Can J Biochem 51: 1654–1660

    Article  PubMed  CAS  Google Scholar 

  • Toroser D, Thormann CE, Osborn TC, Mithen RF (1995) RFLP mapping of quantitative trait loci controlling seed aliphatic glucosinolate content in oilseed rape (Brassica napus). Theor Appl Genet 91: 802–808

    Article  CAS  Google Scholar 

  • Uda Y, Kurata T, Arakawa N (1986) Effects of pH and ferrous ions on the degradation of glucosinolates by myrosinase. Agric Biol Chem 50: 2735–2740

    Article  CAS  Google Scholar 

  • Umbarger HE (1997) Biosynthesis of branched-chain amino acids. In: Neidhardt FC (ed) Escherichia coli and Salmonella cellular and molecular biology, vol 1, 2nd edn. ASM Press, Washington, DC, pp 422–456

    Google Scholar 

  • Underhill EW, Chisholm MD, Wetter LR (1962) Biosynthesis of mustard oil glucosides. Administration of14C-labelled compounds to horseradish, nasturtium and watercress. Can J Biochem Physiol 40: 1505–1514

    Article  PubMed  CAS  Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Bras-sica napus L). I. Construction of an RFLP linkage map and localisation of QTLs for seed glucosinolate content. Theor Appl Genet 90: 194–204

    Google Scholar 

  • Wasser LR, Watson WH (1963) Crystal structure of sinigrin. Nature 198: 127–1298

    Google Scholar 

  • Wittstock U, Halkier BA (2000). Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzyl glucosinolate. J Biol Chem 275: 14659–14666

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mithen, R., Parker, R. (2004). Biochemical Genetics of Glucosinolate Biosynthesis in Brassica . In: Pua, EC., Douglas, C.J. (eds) Brassica. Biotechnology in Agriculture and Forestry, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06164-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06164-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05783-0

  • Online ISBN: 978-3-662-06164-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics