Skip to main content

Genetic Engineering of Lipid Composition

  • Chapter
Brassica

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 54))

  • 501 Accesses

Abstract

The brassicas are one of the most important and widely distributed crop types in the world. They are grown in a wide range of climatic regions from the equator to the tropics. The various different Brassica species and genotypes can be cultivated as vegetable or oilseed crops for human nutrition, as forage crops for domestic animals, and as industrial crops to supply oleochemicals. In terms of both amounts of production and economic value, the oilseed brassicas are the most important of these crop types (Downey and Röbbelen 1989). The dominant Brassica oilseed crop species in commercial agriculture are the amphidiploids, B. napus (rapeseed or canola) and B. juncea (Indian mustard) and the diploid B. rapa (turnip or turnip rape). Although different Brassica oilseed species may be preferentially grown in different parts of the world, by far the most important crop for commercial traded oil production is rapeseed. The main centres of rapeseed production are China (11.3 Mt — million tonnes), European Union (8.9 Mt), Canada (5.1 Mt) and India (3.7 Mt).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cahoon EB, Shanklin J (2000) Substrate-dependent mutant complementation to select fatty acid desaturase variants for metabolic engineering of plant seed oils. Proc Natl Acad Sci USA 97: 12350–12355

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Lindqvist Y, Schneider G, Shanklin J (1997) Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc Natl Acad Sci USA 94: 4872–4877

    Article  PubMed  CAS  Google Scholar 

  • Carlson K (2000) Rising market interest in small processing systems. Oils Fats Int Jan 2000:27–28 Downey RK (1964) A selection of Brassica campestris L. containing no erucic acid in its seed oil. Can J Plant Sci 44: 295

    Google Scholar 

  • Downey RK, Röbbelen G (1989) Brassica species. In: Röbbelen G, Downey RK, Ashri A (eds) Oil crops of the world. McGraw-Hill, New York, pp 339–362

    Google Scholar 

  • Facciotti MT, Bertain PB, Yuan L (1999) Improved stearate phenotype in transgenic canola expressing a modified acyl acyl-carrier protein thioesterase. Nat Biotechnol 6: 593–597

    Google Scholar 

  • Hitz B (1999) Economic aspects of transgenic crops which produce novel products. Curr Opin Plant Biol 2: 135–138

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh RJ, Hernan R, Kappel WK, Ritland D, Li CP, Howard JA (1997) Commercial production of avidin from transgenic maize: characterisation of transformant, production, processing, extraction and purification. Mol Breed 3: 291–306

    Article  CAS  Google Scholar 

  • Hood EE, Kusnadi A, Nikolov Z, Howard J (1999) Molecular farming of industrial proteins from transgenic maize. In: Shahidi F, Kolodziejczyk P, Whitaker JR, Munguia AL, Fuller G (eds) Chemicals via higher plant bioengineering. Kluwer/Plenum, New York, pp 127–148

    Chapter  Google Scholar 

  • Kaiser J (2000) Panel urges further study of biotech corn. Science 290: 1867

    Article  PubMed  CAS  Google Scholar 

  • Knutzon DS, Thompson GA, Radke SE, Johnson WB (1992) Modification of Brassica seed oil by antisense expression of a stearoyl–acyl carrier protein desaturase gene. Proc Natl Acad Sci USA 89: 2624–2628

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist Y, Huang W, Schneider G, Shanklin J (1996) Crystal structure of a delta-9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other diiron proteins. EMBO J 15: 4081–4092

    PubMed  CAS  Google Scholar 

  • Lühs WW, Voss A, Seyis F, Friedt W (1999) Molecular genetics of erucic acid content in the genus Brassica. In: Wratten N, Salisbury PA (eds) New horizons for an old crop. Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, Regional Institute Limited, Gosford, New South Wales

    Google Scholar 

  • Murphy DJ (1994) Biotechnology of oil crops. In: Murphy DJ (ed) Designer oil crops. VCH Press, Weinheim, pp 219–251

    Google Scholar 

  • Murphy DJ (1996a) Biodiesel and its prospects. NRC-PBI Bulletin, Saskatoon, Canada, pp 8–10

    Google Scholar 

  • Murphy DJ (1996b) Engineering oil production in rapeseed and other oil crops. Trends Biotechnol 14: 206–213

    Article  CAS  Google Scholar 

  • Murphy DJ (1999a) Manipulation of plant oil composition for the production of valuable chemicals. In: Shahidi F, Kolodziejczyk P, Whitaker JR, Munguia AL, Fuller G (eds) Chemicals via higher plant bioengineering. Kluwer/Plenum, New York, pp 21–35

    Chapter  Google Scholar 

  • Murphy DJ (1999b) Production of novel oils in plants. Curr Opin Biotechnol 10:175–180 Murphy DJ (2001) New oil crops for the 21st century. What is in the pipeline and what is coming in the future. Malaysia Oil Sci Technol 10: 17–21

    Google Scholar 

  • Murphy DJ, Mithen RF (1995) Biotechnology. In: Kimber D, McGregor I (eds) Production and utilization of Brassica oilseeds. CABI, Oxon, UK, pp 177–193

    Google Scholar 

  • Roscoe TJ, Lessire R, Puyaubert J, Renard M, Delseny M (2001) Mutations in the fatty acid elongation 1 gene are associated with a loss of beta-ketoacyl-CoA synthase activity in low erucic acid rapeseed. FEBS Lett 492: 107–111

    Article  PubMed  CAS  Google Scholar 

  • Steffansson BR, Hougen FW, Downey RK (1961) Note on the isolation of rape plants with seed oil free from erucic acid. Can J Plant Sci 41: 218–219

    Article  Google Scholar 

  • Steinbüchel A, Fuchtenbusch B (1998) Bacteria and other biological systems for polyester production. Trends Biotechnol 16: 419–427

    Article  PubMed  Google Scholar 

  • Thompson GA, Li C (1997) Altered fatty acid composition of membrane lipids in seeds and seedling tissues of high-saturate canolas. In: Williams JP, Khan MU, Lem NW (eds) Physiology, biochemistry and molecular biology of plant lipids. Kluwer, Dordrecht, pp 313–315

    Google Scholar 

  • Valentin HE, Broyles DL, Casagrande LA, Colburn SM, Creely WL, DeLaquil PA, Felton HM, Gonzalez KA, Houmiel KL, Lutke K, Mahadeo DA, Mitsky TA, Padgette SR, Reiser SE, Slater S, Stark DM, Stock RT, Stone DA, Taylor NB, Thorne GM, Tran M, Gruys KJ (1999) PHA production, from bacteria to plants. Int J Biol Macromol 25: 303–306

    Article  PubMed  CAS  Google Scholar 

  • Voelker TA, Worrell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Radke SE, Davies HM (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257: 72–73

    Article  PubMed  CAS  Google Scholar 

  • Voelker TA, Hayes TR, Cranmer AM, Turner JC, Davies HM (1996) Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant J 9: 229–241

    Article  CAS  Google Scholar 

  • Wiberg E, Banas A, Stymne S (1997) Fatty acid distribution and lipid metabolism in developing seeds of laurate-producing rape ( Brassica napus L. ). Planta 203: 341–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murphy, D.J. (2004). Genetic Engineering of Lipid Composition. In: Pua, EC., Douglas, C.J. (eds) Brassica. Biotechnology in Agriculture and Forestry, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06164-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06164-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05783-0

  • Online ISBN: 978-3-662-06164-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics