Skip to main content

On Transcellular Ionic Currents

  • Conference paper
Branching in Nature

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 14))

  • 433 Accesses

Abstract

Living organisms drive electric current through themselves. The current is a flow of ions in solutions which passes through the cell via specific proteins like pumps, symports, channels and others. There is evidence that such currents convey information in excitable cells like neurons [1], a fact which sounds quite likely. However, the role of stationary currents in the generation of spatial order or pattern formation in growing and developing organisms looks at first glance more questionable. These stationary ionic currents have been described in plant, animal and microbial systems, in individual cells of unicellular and multicellular organisms, and in both embryonic and mature cells [2–6]. They enter in one region, generate ionic gradients in the cytoplasm and then exit in another part of the membrane. The problem is to know whether these currents are just a passive consequence of an unrelated asymmetry of the cell or if they play by themselves a key role in the generation of those cellular asymmetries. In the context of morphogenesis of cells, one may expect that the self-organization of ionic currents may induce differential growth or deformation of membranes, and hence play a role in tip growth or branching of such cells, in the long run (non-linear regime).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Hille, Ionic Channels of excitable membranes, 2nd edition (Sunderland, 1992).

    Google Scholar 

  2. R. Nuccitelli, Modern Cell Biology 2 (1983) 451–481.

    Google Scholar 

  3. N.A.R. Gow, Adv. Microb. Physiol 30 (1989) 89–123.

    Article  Google Scholar 

  4. F.M. Harold and J.H. Caldwell, Tip Growth in Plant and Fungal Cells (Academic Press, 1990) pp. 59–90.

    Google Scholar 

  5. D. Kropf, M.D.A. Lupa, J.H. Caldwell and F.M. Harold, Sci 220 (1983) 1385–1387.

    Article  ADS  Google Scholar 

  6. L.F. Jaffe and R. Nuccitelli, Ann. Rev. Biophys. Bioeng. 6 (1977) 445–476.

    Article  Google Scholar 

  7. W.J. Lucas, in Oscillations and Morphogenesis, edited by L. Rensing (Marcel Dekker NY, 1993) pp. 411–425.

    Google Scholar 

  8. M. Cougnon, P. Bouyer, G. Planelles and F. Jaisser, Proc. Natl. Acad. Sci. 95 (1998) 6516–6520.

    Article  ADS  Google Scholar 

  9. L. Limozin, B. Denet and P. Pelcé, Phys. Rev. Lett. 78 (1997) 4881–4884.

    Article  ADS  Google Scholar 

  10. A.M. Turing, Philos. Trans. R. Soc. Lond. B 237 (1952) 37.

    Article  ADS  Google Scholar 

  11. V. Castets, E. Dulos, J. Boissonade and P. deKepper, Phys. Rev. Lett. 64 (1990) 2953–2956.

    Article  ADS  Google Scholar 

  12. K. Toko, H. Chosa and K. Yamafuji, J. Theor. Biol. 114 (1985) 125.

    Article  Google Scholar 

  13. K. Toko, M. Nosaka, T. Fujiyoshi, K. Yamafuji and K. Ogata, Bull. Math. Biol. 50 (1988) 225.

    Google Scholar 

  14. P. Pelcé and M. Léonetti, Europhys. Lett. 30 (1995) 221–225.

    Article  ADS  Google Scholar 

  15. L.F. Jaffe, Nat 265 (1977) 600–602.

    Article  ADS  Google Scholar 

  16. M.-M. Poo and K.R. Robinson, Nat 265 (1977) 602–604.

    Article  ADS  Google Scholar 

  17. R. Larter and P. Ortoleva, J. Theor. Biol. 96 (1982) 175.

    Article  MathSciNet  Google Scholar 

  18. M. Léonetti and E. Dubois-Violette, Phys. Rev. E 56 (1997) 4521–4525.

    Article  ADS  Google Scholar 

  19. M. Léonetti and E. Dubois-Violette, Europhys. Lett. 46 (1999) 107–113.

    Article  ADS  Google Scholar 

  20. P. Fromherz and W. Zimmermann, Phys. Rev. E 51 (1995) R1659.

    Article  ADS  Google Scholar 

  21. D. Kropf, Microbiol. Rev. 56 (1992) 316–339.

    Google Scholar 

  22. D. Kropf, Plant Cell 9 (1997) 1011–1012.

    Article  Google Scholar 

  23. D. Kropf, in this book.

    Google Scholar 

  24. D. Kropf, Dev. Biol. 165 (1994) 361–371.

    Article  Google Scholar 

  25. A.C. Scott, Rev. Mod. Phys. 47 (1975) 487.

    Article  ADS  Google Scholar 

  26. M. Léonetti and E. Dubois-Violette, Phys. Rev. Lett. 81 (1998) 1977–1980.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Léonetti, M., Dubois-Violette, E. (2001). On Transcellular Ionic Currents. In: Fleury, V., Gouyet, JF., Léonetti, M. (eds) Branching in Nature. Centre de Physique des Houches, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06162-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06162-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41888-7

  • Online ISBN: 978-3-662-06162-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics