Skip to main content

Mechanics of the Large Artery Vascular Wall

  • Conference paper
Branching in Nature

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 14))

Abstract

The aorta and large arteries are generally thought of as conduit vessels whose main function is to provide a conduit for blood flow to reach the peripheral tissues. However, because the pressure and flow curves are not a simple ratio, it has long been recognized that the cardiovascular system functions in more complex fashion than merely a simple resistance to blood flow. Blood pressure is highest at the beginning of the systemic circulation; the decrease of blood pressure is not linear with vessel diameter or distance in the vascular tree. Blood pressure decrease ranges from 30 to 40% of the aortic pressure in vessels down from 250 to 50 µm in diameter [1–3] while most of the pressure drop occurs in the terminal arterioles with diameters smaller than 100 µm and which branch into numerous small capillaries. The site of the largest pressure drop may differ between tissues; however, in vessels smaller than 60 µm, no correlation has been found between the central arterial pressure and microvascular pressure which suggests that perfusion pressure is being controlled in these blood vessels and those with lower diameter [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. Gore, Circ. Res. 34 (1974) 581–591.

    Article  ADS  Google Scholar 

  2. B.W. Zweifach, Circ. Res. 34 (1974) 843–857.

    Article  Google Scholar 

  3. M.J. Mulvany and C. Aalkjaer, Physiol. Rev. 70 (1990) 921–961.

    Google Scholar 

  4. R.W. Gore and H.G., Fed. Proc. 34 (1975) 2031–2037.

    Google Scholar 

  5. O. Prank, Z. Biol. 85 (1926) 91–130.

    Google Scholar 

  6. T.E. Carew, R.N. Vaishnav and D.J. Patel, Circ. Res. 23 (1968) 61–68.

    Article  Google Scholar 

  7. P.B. Dobrin and A.A. Rovick, Am. J. Physiol. 217 (1969) 1644–1652.

    Google Scholar 

  8. D.J. Patel, J.S. Janicki and T.E. Carew, Circ Res. 25 (1969) 765–779.

    Article  Google Scholar 

  9. O. Lichtenstein, M.E. Safar, P. Poitevin and B.I. Levy, Hypertension 26 (1995) 15–19.

    Article  Google Scholar 

  10. W.R. Milnor, Hemodynamics (T William and Wilkins Ed., Baltimore, 1989) pp. 71–73.

    Google Scholar 

  11. M.A. Gaballa, C.T. Jacob, T.E. Raya, J. Liu, B. Simon and S. Goldman, Hypertension (1998) (in press).

    Google Scholar 

  12. C.G. Caro, T.J. Pedley, R.C. Schroter and W.A. Seed, The mechanics of the circulation (Oxford University Press, Oxford, 1978).

    MATH  Google Scholar 

  13. M.J. Mulvany and W. Halpern, Nat 260 (1976) 617–619.

    Article  ADS  Google Scholar 

  14. L. Caputo, A. Tedgui and B.I. Levy, Circulation Res. 77 (1995) 303–309.

    Article  Google Scholar 

  15. B.R. Duling and R.J. Rivers, Isolation, cannulation and perfusion of microvessels, edited by C.H. Baker and W.L. Nastuk, Microcirculatory Technology (Academic Press, Orlando, 1986) pp. 265–280.

    Google Scholar 

  16. W. Halpern and M. Kelly, Blood Vessels 28 (1991) 245–251.

    Google Scholar 

  17. R.H. Cox, Am. J. Physiol. (Heart Circ. Physiol. 13) 244 (1983) H298–H303.

    Google Scholar 

  18. B.J. Fallon, N. Stephens, J.R. Tulip and A.M. Haegerty, Am. J. Physiol. 268 (1995) H670–H678.

    Google Scholar 

  19. B.I. Levy, J.B. Michel, J.L. Salzmann, M. Azizi, P. Poitevin, M.E. Safar and J.R Camilleri, Circ. Res. 63 (1988) 227–239.

    Article  Google Scholar 

  20. B.I. Levy, J. Benessiano, P. Poitevin and M.E. Safar, Circ. Res. 66 (1990) 321–328.

    Article  Google Scholar 

  21. B.I. Levy, M. Duriez, M. Phillipe, P. Poitevin and J.B. Michel, Circulation 90 (1994) 3024–3033.

    Article  Google Scholar 

  22. H.Y. Qiu, D. Henrion and B.I. Levy, Hypertension 24 (1994) 317–321.

    Article  Google Scholar 

  23. H.Y. Qiu, D. Henrion and B.I. Levy, Hypertension 24 (1994) 474–479.

    Article  Google Scholar 

  24. H.Y. Qiu and B. Valuer, J. Pharmacol. Toxicol. Method 33 (1995) 159 – 170.

    Article  Google Scholar 

  25. W.M. Chilian, C.L. Eastham and M.L. Marcus, Am. J. Physiol. 25 (1986) H779–H788.

    Google Scholar 

  26. A.P.G. Hoeks, P.J. Brands, F.A.M. Smeets and R.S. Reneman, Ultrasound Med. Biol. 16 (1990) 121–128.

    Article  Google Scholar 

  27. Y. Tardy, D. Hayoz, J.P. Mignot, P. Richard, H.R. Brunner and J.J. Meister, J. Hypertens. Suppl. 10 (1992) S105–S109.

    Article  Google Scholar 

  28. P. Boutouyrie, Y. Bezie, P. Lacolley, P. Challande, P. Chamiot-Clerc, A. Benetos, J.F. de la Faverie, M. Safar and S. Laurent, Arterioscler. Thromb. Vasc. Biol. 17 (1997) 1346–1355.

    Article  Google Scholar 

  29. O. Lichtenstein, M.E. Safar, E. Mathieu, P. Poitevin and B.I. Levy, Hypertension 32 (1998) 346–351.

    Article  Google Scholar 

  30. D.H. Bergel, J. Physiol. (London) 156 (1961) 458–469.

    Google Scholar 

  31. R. Asmar, A. Benetos, J. Topouchian, P. Laurent, B. Pannier, A.M. Brisac, R. Target and B.I. Levy, Hypertension 26 (1995) 485–490.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levy, B., Tedgui, A. (2001). Mechanics of the Large Artery Vascular Wall. In: Fleury, V., Gouyet, JF., Léonetti, M. (eds) Branching in Nature. Centre de Physique des Houches, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06162-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06162-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41888-7

  • Online ISBN: 978-3-662-06162-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics