Advertisement

Mechanics of the Large Artery Vascular Wall

  • B. Levy
  • A. Tedgui
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 14)

Abstract

The aorta and large arteries are generally thought of as conduit vessels whose main function is to provide a conduit for blood flow to reach the peripheral tissues. However, because the pressure and flow curves are not a simple ratio, it has long been recognized that the cardiovascular system functions in more complex fashion than merely a simple resistance to blood flow. Blood pressure is highest at the beginning of the systemic circulation; the decrease of blood pressure is not linear with vessel diameter or distance in the vascular tree. Blood pressure decrease ranges from 30 to 40% of the aortic pressure in vessels down from 250 to 50 µm in diameter [1–3] while most of the pressure drop occurs in the terminal arterioles with diameters smaller than 100 µm and which branch into numerous small capillaries. The site of the largest pressure drop may differ between tissues; however, in vessels smaller than 60 µm, no correlation has been found between the central arterial pressure and microvascular pressure which suggests that perfusion pressure is being controlled in these blood vessels and those with lower diameter [4].

Keywords

Pulse Wave Velocity Input Impedance Potassium Cyanide Longitudinal Impedance Vascular Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.W. Gore, Circ. Res. 34 (1974) 581–591.ADSCrossRefGoogle Scholar
  2. [2]
    B.W. Zweifach, Circ. Res. 34 (1974) 843–857.CrossRefGoogle Scholar
  3. [3]
    M.J. Mulvany and C. Aalkjaer, Physiol. Rev. 70 (1990) 921–961.Google Scholar
  4. [4]
    R.W. Gore and H.G., Fed. Proc. 34 (1975) 2031–2037.Google Scholar
  5. [5]
    O. Prank, Z. Biol. 85 (1926) 91–130.Google Scholar
  6. [6]
    T.E. Carew, R.N. Vaishnav and D.J. Patel, Circ. Res. 23 (1968) 61–68.CrossRefGoogle Scholar
  7. [7]
    P.B. Dobrin and A.A. Rovick, Am. J. Physiol. 217 (1969) 1644–1652.Google Scholar
  8. [8]
    D.J. Patel, J.S. Janicki and T.E. Carew, Circ Res. 25 (1969) 765–779.CrossRefGoogle Scholar
  9. [9]
    O. Lichtenstein, M.E. Safar, P. Poitevin and B.I. Levy, Hypertension 26 (1995) 15–19.CrossRefGoogle Scholar
  10. [10]
    W.R. Milnor, Hemodynamics (T William and Wilkins Ed., Baltimore, 1989) pp. 71–73.Google Scholar
  11. [11]
    M.A. Gaballa, C.T. Jacob, T.E. Raya, J. Liu, B. Simon and S. Goldman, Hypertension (1998) (in press).Google Scholar
  12. [12]
    C.G. Caro, T.J. Pedley, R.C. Schroter and W.A. Seed, The mechanics of the circulation (Oxford University Press, Oxford, 1978).MATHGoogle Scholar
  13. [13]
    M.J. Mulvany and W. Halpern, Nat 260 (1976) 617–619.ADSCrossRefGoogle Scholar
  14. [14]
    L. Caputo, A. Tedgui and B.I. Levy, Circulation Res. 77 (1995) 303–309.CrossRefGoogle Scholar
  15. [15]
    B.R. Duling and R.J. Rivers, Isolation, cannulation and perfusion of microvessels, edited by C.H. Baker and W.L. Nastuk, Microcirculatory Technology (Academic Press, Orlando, 1986) pp. 265–280.Google Scholar
  16. [16]
    W. Halpern and M. Kelly, Blood Vessels 28 (1991) 245–251.Google Scholar
  17. [17]
    R.H. Cox, Am. J. Physiol. (Heart Circ. Physiol. 13) 244 (1983) H298–H303.Google Scholar
  18. [18]
    B.J. Fallon, N. Stephens, J.R. Tulip and A.M. Haegerty, Am. J. Physiol. 268 (1995) H670–H678.Google Scholar
  19. [19]
    B.I. Levy, J.B. Michel, J.L. Salzmann, M. Azizi, P. Poitevin, M.E. Safar and J.R Camilleri, Circ. Res. 63 (1988) 227–239.CrossRefGoogle Scholar
  20. [20]
    B.I. Levy, J. Benessiano, P. Poitevin and M.E. Safar, Circ. Res. 66 (1990) 321–328.CrossRefGoogle Scholar
  21. [21]
    B.I. Levy, M. Duriez, M. Phillipe, P. Poitevin and J.B. Michel, Circulation 90 (1994) 3024–3033.CrossRefGoogle Scholar
  22. [22]
    H.Y. Qiu, D. Henrion and B.I. Levy, Hypertension 24 (1994) 317–321.CrossRefGoogle Scholar
  23. [23]
    H.Y. Qiu, D. Henrion and B.I. Levy, Hypertension 24 (1994) 474–479.CrossRefGoogle Scholar
  24. [24]
    H.Y. Qiu and B. Valuer, J. Pharmacol. Toxicol. Method 33 (1995) 159 – 170.CrossRefGoogle Scholar
  25. [25]
    W.M. Chilian, C.L. Eastham and M.L. Marcus, Am. J. Physiol. 25 (1986) H779–H788.Google Scholar
  26. [26]
    A.P.G. Hoeks, P.J. Brands, F.A.M. Smeets and R.S. Reneman, Ultrasound Med. Biol. 16 (1990) 121–128.CrossRefGoogle Scholar
  27. [27]
    Y. Tardy, D. Hayoz, J.P. Mignot, P. Richard, H.R. Brunner and J.J. Meister, J. Hypertens. Suppl. 10 (1992) S105–S109.CrossRefGoogle Scholar
  28. [28]
    P. Boutouyrie, Y. Bezie, P. Lacolley, P. Challande, P. Chamiot-Clerc, A. Benetos, J.F. de la Faverie, M. Safar and S. Laurent, Arterioscler. Thromb. Vasc. Biol. 17 (1997) 1346–1355.CrossRefGoogle Scholar
  29. [29]
    O. Lichtenstein, M.E. Safar, E. Mathieu, P. Poitevin and B.I. Levy, Hypertension 32 (1998) 346–351.CrossRefGoogle Scholar
  30. [30]
    D.H. Bergel, J. Physiol. (London) 156 (1961) 458–469.Google Scholar
  31. [31]
    R. Asmar, A. Benetos, J. Topouchian, P. Laurent, B. Pannier, A.M. Brisac, R. Target and B.I. Levy, Hypertension 26 (1995) 485–490.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • B. Levy
  • A. Tedgui

There are no affiliations available

Personalised recommendations