Skip to main content

Vascular Development: Design Principles and Morphometric Analysis of a Branched Vascular Tree

  • Conference paper
  • 446 Accesses

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 14))

Abstract

The formation of new blood vessels is an important process in embryonic development and in (patho) physiological conditions like cyclic vessel growth in the endometrium, wound healing, diabetic retinopathy, and tumor growth. Lack of blood vessel growth is a key event in pathologies like essential hypertension, peptic ulcers, and bowel atresia. At present clinical trials are undertaken with anti-angiogenic drugs to interfere with tumor development [2, 3, 7, 14, 19]. Pro-angiogenic therapies, or “therapeutic angiogenesis” are employed in the treatment of ischemia related events such as coronary artery disease (“infarction”) and peripheral artery occlusive diseases [11, 20, 56, 59, 67]. This therapy aims at stimulation of collateral artery formation to the ischemic region thereby restoring flow and oxygen delivery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.H. Adair, W.J. Gay and J. Montani, Am. J. Physiol. 259 (1990) R393–R404.

    Google Scholar 

  2. T.H. Adair, W.J. Gay and J. Montani, Regulatory Integrative Comp. Physiol. 28 (1990) R393–R404.

    Google Scholar 

  3. C. Amant, L. Berthou and K. Walsh, Drugs 58 (1999) 33–36.

    Article  Google Scholar 

  4. C.T. Baillie, M.C. Winslet and N.J. Bradley, Br. J. Cancer 72 (1995) 257–267.

    Article  Google Scholar 

  5. L. Beck, P.A. D’Amore, FASEB J. 11 (1997) 365–373.

    Google Scholar 

  6. S. Bellusci, J. Grindley, H. Emoto, N. Itoh and B.L. Hogan, Development 124 (1997) 4867–4878.

    Google Scholar 

  7. M. Bergwerff, M.E. Verberne, M.C. Deruiter, R.E. Poelmann and A.C. Gittenberger-De Groot, Circ. Res. 82 (1998) 221–231.

    Article  Google Scholar 

  8. V. Brower, Nat-Biotechnol 17 (1999) 963–968.

    Article  Google Scholar 

  9. I. Buschmann and W. Schaper, N.I.P.S. 14 (1999) 121–125.

    Google Scholar 

  10. P. Carmeliet and D. Collen, TCM 7 (1997) 271–281.

    Google Scholar 

  11. J.D. Coffin, J. Harrison, S. Schwartz and R. Heimark, Dev. Biol. 148 (1991) 51–62.

    Article  Google Scholar 

  12. T. Couffinhal, M. Silver, L.P. Zheng, M. Kearney, B. Witzenbichler and J.M. Isner, Am. J. Pathol. 152 (1998) 1667–1679.

    Google Scholar 

  13. P.F. Davies, Phys. Rev. 75 (1995) 519–560.

    Google Scholar 

  14. A.A. De Maximy, Y. Nakatake, S. Moneada, N. Itoh, J.P. Thiery and S. Bellusci, Mech. Dev. 81 (1999) 213–216.

    Article  Google Scholar 

  15. J. Denekamp, British J. Radiol. 66 (1993) 181–196.

    Article  Google Scholar 

  16. E.M. De Robertis, G. Oliver and C.V.E. Wright, Sci Am. (1990) 26–32.

    Google Scholar 

  17. V. Djonov, M. Schmid, S.A. Tschanz and P.H. Burri, Circ. Res. 86 (2000) 286–292.

    Article  Google Scholar 

  18. N. Ferrara and T. Davis-Smyth, Endocrine Rev. 18 (1997) 4–25.

    Article  Google Scholar 

  19. I. Flamme and W. Risau, Development 116 (1992) 435–439.

    Google Scholar 

  20. J. Folkman, Antiangiogenic gene therapy, in Proceedings of the National Acadamy of Sciences USA 95 (1998) pp. 9064–9066.

    Google Scholar 

  21. J. Folkman, Circ. 97 (1998) 1108–1110.

    Article  Google Scholar 

  22. P. Gaehtgens, K. Ley and A.R. Pries, Topological approach to the analysis of microvessel structure and hematocrit distribution, in Microvascular networks: experimental and theoretical studies, edited by Popel and Johnson (Basel: Karger, 1985) pp. 52–60.

    Google Scholar 

  23. M.E. Gottlieb, Vascular Networks: fractal anatomies from non-linear physiologies, in Proceedings 13th annual conference IEEE (Orlando, 1991).

    Google Scholar 

  24. M.E. Gottlieb, The VT model: 1 deterministic model of angiogenesis and bio fractals based on physiological rules, in Proceedings IEEE, 17th annual northeast bioengineering Conf. (1991) pp. 38–39.

    Google Scholar 

  25. J.P. Van Groningen, A.C.G. Wenink and L.H.M. Tester, Anat. Embryol. 184 (1991) 65–70.

    Article  Google Scholar 

  26. W. Hacking, The interaction between vascular structure and blood flow distribution Ph.D. Thesis, University of Amsterdam, Department of Biophysics (1995).

    Google Scholar 

  27. W.J.G. Hacking, E. Vanbavel and J.A.E. Spaan, Am. J. Physiol 270 (1996) H364-H375.

    Google Scholar 

  28. Z.C. Han and Y. Liu, Int. J. Hematol. 70 (1999) 68–82.

    Google Scholar 

  29. D. Hanahan, Sci 277 (1997) 48–50.

    Article  Google Scholar 

  30. R.E. Horton, Geol. Soc. Am. Bull. 56 (1945) 275–370.

    Article  ADS  Google Scholar 

  31. A.G. Hudetz, P Microvasc. Res. 45 (1993) 1–10.

    Article  Google Scholar 

  32. O. Hudlicka, Microcirculation 5 (1998) 7–23.

    Google Scholar 

  33. J.E. Hungerford and C.D. Little, J. Vase. Res. 36 (1999) 2–27.

    Article  Google Scholar 

  34. D.E. Ingber, Ann. Rev. Physiol. 59 (1997) 575–599.

    Article  Google Scholar 

  35. A. Kamiya, R. Bukhari and T. Togawa, Bull. Math. Biol. 46 (1984) 127–137.

    Google Scholar 

  36. G.S. Kassab, C.A. Rider, N.J. Tang and Y.B. Fung, Am. J. Physiol. 265 (1993) H350-H365.

    Google Scholar 

  37. M. LaBarbera, Sci 249 (1990) 992–1000.

    Article  ADS  Google Scholar 

  38. B.L. Langille and F. O’Donnell, Sci 231 (1986) 405–407.

    Article  ADS  Google Scholar 

  39. F.A.C. Le Noble, L.C.G.A. Kessels-Van Wylick, W.J.G. Hacking, D.W. Slaaf, M.G.A. Oude Egbrink and H.A.J. Struijker-Boudier, J. Vase. Res. 33 (1996) 480–488

    Google Scholar 

  40. F.A.C. Le Noble, K. Ruijtenbeek, S. Gommers, J.G. De Mey and C.E. Blanco, Am. J. Physiol. 278 (2000) H1261-H1268.

    Google Scholar 

  41. F.A.C. Le Noble, F.R.M. Stassen, W.J.G. Hacking and H.A.J. Struijker Boudier, J. Hypertens. 16 (1998) 1563–1572.

    Article  Google Scholar 

  42. J.R. Less, M.C. Posner, T.C. Skalak, N. Wolmark and R.K. Jain, Microcirculation 4 (1997) 25–33.

    Article  Google Scholar 

  43. J.R. Less, T.C. Skalak, E.M. Sevick and R.K. Jain, Cancer Res. 51 (1991) 265–273.

    Google Scholar 

  44. K. Ley, A.R. Pries and P. Gaehtgens, Microvasc. Res. 32 (1986) 315–332.

    Article  Google Scholar 

  45. R.J. Metzger and M.A. Krasnow, Sci 284 (1999) 1635–1639.

    Article  Google Scholar 

  46. M.J. Mulvany and C. Aalkjaer, Phys. Rev. 70 (1990) 921–961.

    Google Scholar 

  47. C.D. Murray, The physiological principle of minimum work. The vascular system and the cost of blood volume, in Proceedings of the National Acadamy of Sciences USA 12 (1926) pp. 207–214.

    Google Scholar 

  48. D.M. Noden, Am. Rev. Respir. Dis. 140 (1989) 1097–1103.

    Google Scholar 

  49. S. Patan, B. Haenni and P.H. Burri, Microvasc. Res. 51 (1996) 80–98.

    Article  Google Scholar 

  50. T.J. Poole and J.D. Coffin, Morphogenetic mechanisms in avian vascular development, in Issues in Biomedicine: The development of the vascular system, edited by R.N. Feinberg, G.K. Sherer and R. Auerbach (Basel: Karger, 1991) Vol. 14, pp. 25–36.

    Google Scholar 

  51. R.J. Price, G.K. Owens and T.C. Skalak, Circ. Res. 75 (1994) 520–527.

    Article  Google Scholar 

  52. R.J. Price and T.C. Skalak, Microvasc. Res. 47 (1994) 188–202.

    Article  Google Scholar 

  53. R.J. Price and T.C. Skalak, Microcirculation 5 (1998) 39–47.

    Google Scholar 

  54. A.R. Pries, T.W. Secomb and P. Gaehtgens, Circ. Res. 77 (1995) 1017 – 1023.

    Article  Google Scholar 

  55. W. Risau, Nat 386 (1997) 671–674.

    Article  ADS  Google Scholar 

  56. K. Sandau and H. Kurz, J. Microscopy 175 (1994) 205–213.

    Article  Google Scholar 

  57. W. Schaper and W.D. Ito, Circ. Res. 79 (1996) 911–919.

    Article  Google Scholar 

  58. P. Chlatter, M.F. König, L.M. Karlsson and P.H. Burri, Microvasc. Res. 54 (1997) 65–73.

    Article  Google Scholar 

  59. G.W. Schmid-Schoenbein, B.W. Zweifach and S. Kovalcheck, Microvasc. Res. 14 (1977) 303–317.

    Article  Google Scholar 

  60. F.W. Sellke and M. Simons, Drugs 58 (1999) 391–396.

    Article  Google Scholar 

  61. G.L. Semenza, Biochem. Pharmacol. 59 (2000) 47–53.

    Article  Google Scholar 

  62. D. Shepro and N. Morel, FASEB J. 7 (1993) 1031–1038.

    Google Scholar 

  63. T.C. Skalak and R.J. Price, Microcirculation 3 (1996) 143–165.

    Article  Google Scholar 

  64. T.C. Skalak, R.J. Price and P.J. Zeller, Microcirculation 5 (1998) 91–94.

    Google Scholar 

  65. A.N. Strahler, Bull. Geol. Soc. Am. 63 (1952) 1117–1142.

    Article  Google Scholar 

  66. D.M. Strick, R.L. Waycaster, J.P. Montani, W.J. Gay and T.H. Adair, Am. J. Physiol. 260 (1991) H1385-H1389.

    Google Scholar 

  67. L.A. Taber, Biophysic. J. 74 (1998) 109–114.

    Article  ADS  Google Scholar 

  68. S. Takeshita, L.P. Zheng, E. Brogi, M. Kearney, L.Q. Pu, S. Bunting, N. Ferrara, J.F. Symes and J.M. Isner, J. Clin. Invest. 93 (1994) 662–670.

    Article  Google Scholar 

  69. R. Thoma, Untersuchungen ber die Histogenesis und Histomechanik des Gefass systems (German) (Stuttgart: Enke, 1893).

    Google Scholar 

  70. E. Vanbavel and J.A.E. Spaan, Circ. Res. 71 (1992) 1200–1212.

    Article  Google Scholar 

  71. R.B. Vernon and H.E. Sage, Am. J. Pathology 147 (1995) 873–883.

    Google Scholar 

  72. H.U. Wang, Z.F. Chen and D.J. Anderson, Cell 93 (1998) 741–753.

    Article  Google Scholar 

  73. E. Weibel, Morphometry of the human lung (Springer, Berlin, 1963).

    Google Scholar 

  74. M. Zamir, J. Gen. Physiol. 69 (1977) 449–461.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

le Noble, F., Hacking, W., Slaaf, D., Struijker-Boudier, H. (2001). Vascular Development: Design Principles and Morphometric Analysis of a Branched Vascular Tree. In: Fleury, V., Gouyet, JF., Léonetti, M. (eds) Branching in Nature. Centre de Physique des Houches, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06162-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06162-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41888-7

  • Online ISBN: 978-3-662-06162-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics