Advertisement

Patterns with Open Branches or Closed Networks: Growth in Scalar or Tensorial Fields

  • Y. Couder
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 14)

Abstract

In a variety of physical systems in which there is growth, patterns are spontaneously generated. Since it is also during their growth that living entities acquire their shapes, it is tempting to consider possible relations between the two types of morphogenesis. This direction of research was initiated by D’Arcy Thompson (1917) in his classical book “On Growth and Form”. To the present day it is still an important and open problem. The fact that biological growth is under the control of genetic factors does not abolish the fact that it also obeys the laws of physics. Many situations of biological morphogenesis can thus involve an interplay between genetic determination and physical self-organisation. This is, of course, well beyond the field of the present article. We limit ourselves here to the description of some recent results concerning branches and meshworks in physical systems and discuss a few biological systems, mostly in botany, where these results may be relevant.

Keywords

Tensorial Field Transverse Crack Secondary Vein Main Vein Hele Shaw Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Allain and L. Limat, Phys. Rev. Lett 74 (1995) 2981–2984.ADSCrossRefGoogle Scholar
  2. G.S. Avery, Amer. J. Bot. 20 (1933) 513–564.CrossRefGoogle Scholar
  3. J. Bataille, Rev. Inst. Pétrole 23 (1968) 1349–1364.Google Scholar
  4. M. Ben Amar, Phys. Rev. A. 41 (1990) 2080–2092.ADSCrossRefGoogle Scholar
  5. M. Ben Amar, Phys. Rev. A 44 (1991) 3673–3685.ADSCrossRefGoogle Scholar
  6. M. Ben Amar, V. Hakim, M. Mashaal and Y. Couder, Phys. Fluids A 3 (1991) 2039–2042.ADSMATHCrossRefGoogle Scholar
  7. Ben Jacob, H. Schmueli, O. Shochet and A. Tenenbaum, Physica A 187 (1992) 378–424.ADSCrossRefGoogle Scholar
  8. E. Blackman, Ann. Bot 35 (1971) 653–665.Google Scholar
  9. P. Bouissou, A. Chiffaudel, B. Perrin and P. Tabeling, Europhys. Lett. 13 (1990) 89–94.ADSCrossRefGoogle Scholar
  10. R.L. Chuoke, P. Van Meurs and C. Van der Pol, AIME 216 (1959) 188–194.Google Scholar
  11. Y. Couder, Perspectives in Fluid Dynamics (Cambridge University Press, 2000).Google Scholar
  12. Y. Couder, F. Argoul, A. Arnéodo, J. Maurer and M. Rabaud, Phys. Rev. A 42 (1990) 3499–3503.ADSCrossRefGoogle Scholar
  13. Y. Couder, L. Pauchard, M. Adda-Bedia, C. Allain and S. Douady, On the self-organisation of leaf venation (1999) Preprint.Google Scholar
  14. W. D’Arcy Thompson, On growth and Form, Vols. 1 and 2 (Cambridge University Press, 1917), Edition of 1952.Google Scholar
  15. S. Douady and Y. Couder, J. Theor. Biol. 178 (1996) 255–312.CrossRefGoogle Scholar
  16. K. Esau, Plant Anatomy (John Wiley, New York, 1953).Google Scholar
  17. H. Fujikawa and M. Matsushita, J. Phys. Soc. Jpn. 60 (1991) 88–94.ADSCrossRefGoogle Scholar
  18. L.J. Gibson and M.F. Ashby, Proc. Roy. Soc. London A 383 (1982) 43–59.ADSCrossRefGoogle Scholar
  19. P.B. Green, Int. J. Plant Sci. 153 (1992) S59-S75.CrossRefGoogle Scholar
  20. A. Groisman and E. Kaplan, Europhys. Lett. 25 (1994) 415–420.ADSCrossRefGoogle Scholar
  21. Z. Hejnowicz and A. Sievers, J. Exp. Bot. 46 (1995) 1045–1053.CrossRefGoogle Scholar
  22. L.J. Hickey, Amer. J. Bot. 60 (1973) 17–33.CrossRefGoogle Scholar
  23. P. Huerre, Perspectives in Fluid Dynamics (Cambridge University Press, 2000).Google Scholar
  24. D. Kessler, J. Koplik and H. Levine, Adv. Phys. 37 (1988) 255–339.ADSCrossRefGoogle Scholar
  25. U. Kutschera, Physiologia Plantaram 77 (1989) 157–163.CrossRefGoogle Scholar
  26. E. Lajeunesse and Y. Couder, J. Fluid Mech. 419 (2000) 125–149.MathSciNetADSMATHCrossRefGoogle Scholar
  27. P.M. Lintilhac and T.B. Vesecky, Amer. J. Bot. 68 (1981) 1222–1230.CrossRefGoogle Scholar
  28. G.H. Mitchison, Sci 196 (1977) 270–275.ADSCrossRefGoogle Scholar
  29. G.J. Mitchison, Proc. Roy. Soc. London B 207 (1980) 79–109.ADSCrossRefGoogle Scholar
  30. H. Meinhardt, Models of pattern formation and their application to plant development, in Positional controls in plant development, edited by W. Barlow and D.J. Carr (Cambridge University Press, 1984).Google Scholar
  31. W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 35 (1964) 444–451.ADSCrossRefGoogle Scholar
  32. T. Nelson and N. Dengler, The Plant Cell 9 (1997) 1121–1135.CrossRefGoogle Scholar
  33. L. Pauchard, F. Parisse and C. Allain, Phys. Rev. E 59 (1999) 3737–3740.ADSCrossRefGoogle Scholar
  34. P. Pelcé, Dynamics of Curved Fronts (Academic Press, San Diego, 1988).MATHGoogle Scholar
  35. W.S. Peters and A.D. Tomos, Ann. Bot. 77 (1996) 657–665.CrossRefGoogle Scholar
  36. Y. Pomeau and M. Ben Amar, Dendritic growth and related topics, in Solids far from equilibrium, edited by C. Godrèche (Cambridge University Press, 1992).Google Scholar
  37. X.W. Quian and H.Z. Cummins, Phys. Rev. Lett. 64 (1990) 3038–3041.ADSCrossRefGoogle Scholar
  38. M. Rabaud, Y. Couder and N. Gerard, Phys. Rev. A 37 (1988) 935–947.ADSCrossRefGoogle Scholar
  39. T. Sachs, Pattern formation in plant tissues (Cambridge University Press, Cambridge, 1991).CrossRefGoogle Scholar
  40. H. Thomé, M. Rabaud, V. Hakim and Y. Couder, Phys. Fluids A 1 (1989) 224–240.ADSCrossRefGoogle Scholar
  41. T. Witten and L.M. Sander, Phys. Rev. B 27 (1983) 5686–5697.MathSciNetADSCrossRefGoogle Scholar
  42. Ya.B. Zel’dovich, A.G. Istratov, N.I. Kidin and V.B. Librovich, Combust. Sci. Technol. 24 (1980) 1–13.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Y. Couder

There are no affiliations available

Personalised recommendations