Biomining pp 247-258 | Cite as

Thermophiles and Bioleaching

  • Paul R. Norris
Part of the Biotechnology Intelligence Unit book series (BIOIU)


Acidophilic microorganisms that oxidize iron and sulfur can be exposed to high temperatures in geothermal environments and in some heaps of ores and mine wastes. A variety of types with different optimum temperatures for growth are found across temperature gradients in the natural environments and may succeed one another as exothermic oxidation reactions increase the temperature in the industrial heaps. Most of the commercial, mineral-processing bioreactors are operated with mesophilic bacteria at about 40°C1 (see chapter 3). Approaching this temperature, however, activity of well-studied, mesophilic Proteobacteria such as Thiobacillus ferrooxidans and Thiobacillus thiooxidans can be exceeded by that of Thiobacillus caldus and Sulfobacillus species, which grow optimally at about 45°C. At the extremes of their temperature ranges for growth, these moderate thermophiles can grow in mixed cultures with mesophiles or with extreme thermophiles. One commercial bioreactor has been developed to utilize such organisms at 45°–50°C for extraction of gold from a pyrite/arsenopyrite concentrate2 (see chapter 4). Between 50° and 55°C, their growth becomes progressively restricted whereas that of the Sulfolobus-like archaea increases, with some strains active to at least 85°C. These most thermophilic acidophiles are usually associated with sulfurous hot springs3 but they have also been found in drainage of a copper mine4 and in self-heating heaps of waste from coal5 and uranium mining.6


Mineral Sulfide Autotrophic Growth Thiobacillus Ferrooxidans Acidophilic Bacterium Moderate Thermophile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dew DW. Comparison of performance for continuous bio-oxidation of refractory gold ore flotation concentrates. In: Vargas T, Jerez CA, Wiertz JV et al, eds. Biohydrometallurgical Processing. Vol I. Santiago: University of Chile, 1995: 239–251.Google Scholar
  2. 2.
    Brierley CL, Brans R. Selection of Bactech’s thermophilic biooxidation process for Youanmi mine. In: Biomine ‘84. Glendale: Australian Mineral Foundation, 19945.1-5.7.Google Scholar
  3. 3.
    Brock TD. Thermophilic Microorganisms and Life at High Temperatures. New York: Springer-Verlag, 1978.CrossRefGoogle Scholar
  4. 4.
    Gomez E, Lopez AI, Marin I et al. Isolation and characterization of novel bioleaching microorganisms from Rio Tinto. In: Torma AE, Apel ML, Brierley CL, eds. Biohydrometallurgical Technologies. Vol 2. Warrendale, PA: The Minerals, Metals and Materials Society, 1993:479–486Google Scholar
  5. 5.
    Marsh RM, Norris PR. The isolation of some thermophilic, autotrophic, iron- and sulfur-oxidizing bacteria. FEMS Microbiol Lett 1983; 17: 311–315.Google Scholar
  6. 6.
    Fuchs T, Huber H, Teiner K et al. Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany. System Appl Microbiol 1995; 18: 560–566.Google Scholar
  7. 7.
    Brierley JA. Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl Environ Microbiol 1978; 36:523-525.Google Scholar
  8. 8.
    Murr LE, Brierley JA. The use of large-scale test facilities in studies of the role of microorganisms in commercial mineral leaching operations. In: Murr LE, Torma AE, Brierley JA, eds. Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena. New York: Academic Press, 1983: 491–520.Google Scholar
  9. 9.
    Marsh RM, Norris PR. Mineral sulfide oxidation by moderately thermophilic acidophilic bacteria. Biotechnol Lett 1983; 5: 585–590.Google Scholar
  10. 10.
    Marsh RM, Norris PR, Le Roux NW. Growth and mineral oxidation studies with Sulfolobus. In: Rossi G, Torma AE, eds. Recent Progress in Biohydrometallurgy. Iglesias: Associazione Mineraria Sarda, 1983: 71–81.Google Scholar
  11. 11.
    Brierley CL. Bacterial leaching. Crit Rev Microbiol 1978; 6: 207–262.CrossRefGoogle Scholar
  12. 12.
    Brierley JA, Brierley CL. Microbial mining using thermophilic microorganisms. In: Brock TD, ed. Thermophiles: General, Molecular and Applied Microbiology. New York: Wiley, 1986: 279–305.Google Scholar
  13. 13.
    Norris PR. Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich HL, Brierley, CL, eds. Microbial Mineral Recovery. New York: McGraw-Hill, 1990:3–27.Google Scholar
  14. 14.
    Rawlings DE. Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments. In: Vargas T, Jerez CA, Wiertz JV et al, eds. Biohydrometallurgical Processing. Vol II. Santiago: University of Chile, 1995: 9–17.Google Scholar
  15. 15.
    Goebel BM, Stackebrandt E. Cultural and phylogenetical analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 1994; 60: 1614–1621.Google Scholar
  16. 16.
    Norris PR. Iron and mineral oxidation studies with Leptospirillum-like bacteria. In: Rossi G, Torma AE, eds. Recent Progress in Biohydrometallurgy. Iglesias: Associazione Mineraria Sarda, 1983: 83–96.Google Scholar
  17. 17.
    Golovacheva RS, Golyshina OV, Karavaiko GI et al. A new iron-oxidizing bacterium, Leptospirillum thermoferrooxidans sp. nov. Mikrobiologiya 1992; 61:744–750.Google Scholar
  18. 18.
    Le Roux NW, Wakerley DS, Hunt SD. Thermophilic Thiobacillus-type bacteria from Icelandic thermal areas. J Gen Microbiol 1977; 100: 197–201.CrossRefGoogle Scholar
  19. 19.
    Golovacheva RS, Karavaiko GI. Sulfobacillus-a new genus of spore-forming thermophilic bacteria. Microbiology (trans. Mikrobiologiya) 1979; 48: 658–665.Google Scholar
  20. 20.
    Norris PR, Clark DA, Owen JP, Waterhouse S. Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral sulfide-oxidizing bacteria. Microbiology 1996; 142: 775–783.Google Scholar
  21. 21.
    Tourova TP, Poltoraus AB, Lebedeva IA et al. 16S ribosomal RNA (rDNA) sequence analysis and phylogentic position of Sulfobacillus thermosulfidooxidans. System Appl Microbiol 1994; 17:509-512.Google Scholar
  22. 22.
    Durand P. Primary structure of the 16S rRNA gene of Sulfobacillus thermosulfidooxidans by direct sequencing of PCR amplified gene and its similarity with that of other moderately thermophilic chemolithotrophic bacteria. System Appl Microbiol 1996; 19:360–364.Google Scholar
  23. 23.
    Wisotzkey JD, Jurtshuk Jr P, Fox GE et al. Comparative sequence analyzes on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 1992; 42: 263–269.PubMedCrossRefGoogle Scholar
  24. 24.
    Norris PR, Barr, DW, Hinson, D. Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Norris PR, Kelly DP, eds. Biohydro-metallurgy, Int Symp Proc. Kew: Science and Technology Letters, 1988:43-59.Google Scholar
  25. 25.
    Ghauri MA, Johnson DB. Physiological diversity amongst some moderately thermophilic iron-oxidizing bacteria. FEMS Microbiol Ecol 1991; 85: 327–334.Google Scholar
  26. 26.
    Hendy NA. Isolation of thermophilic iron-oxidizing bacteria from sulfidic waste rock. J Ind Microbiol 1987; 389–392.Google Scholar
  27. 27.
    Norris PR. Factors affecting bacterial mineral oxidation: the example of carbon dioxide in the context of bacterial diversity. In: Salley J, McCready RGL, Wichlacz PL, eds. Biohydrometallurgy 1989. Ontario: CANMET, 1989: 3–14.Google Scholar
  28. 28.
    Norris PR, Owen JP. Mineral sulfide oxidation by enrichment cultures of novel thermoacidophilic bacteria. FEMS Microbiol Rev 1993; 11: 51–56.CrossRefGoogle Scholar
  29. 29.
    Clark DA, Norris PR. Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 1996; 142: 785–790.CrossRefGoogle Scholar
  30. 30.
    Holden PJ, Brown RW. Amplification of ribulose bisphosphate carboxylase/ oxygenase large subunit (RuBisCO LSU) gene fragments from Thiobacillus ferrooxidans and a moderate thermophile using polymerase chain reaction. FEMS Microbiol Rev 1993; 11:19–30.Google Scholar
  31. 31.
    Norris PR, Barr DW. Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiol Lett 1995; 28: 221–224.Google Scholar
  32. 32.
    Schwartz A, Schwartz W. Geomikrobiologische Untersuchungen VII. Ober das Vorkommen von Mikroorganismen in solfataren and heissen Quellen. Z Allg Mikrobiol 1965; 5: 395–405.Google Scholar
  33. 33.
    Fliermans CB, Brock TD. Ecology of sulfur-oxidizing bacteria in hot acid soils. J Bacteriol 1972; 111:343–350.Google Scholar
  34. 34.
    Norris PR, Marsh RM, Lindström EB. Growth of mesophilic and thermophilic acidophilic bacteria on sulfur and tetrathionate. Biotechnol Appl Biochem 1986; 8: 318–329.Google Scholar
  35. 35.
    Hallberg KB, Lindström EB. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 1994; 140:3451-3456.Google Scholar
  36. 36.
    Brierley CL, Murr LE. Leaching: use of a thermophilic and chemoautotrophic microbe. Science 1973; 179:488–490.Google Scholar
  37. 37.
    Brock TD, Brock KM, Belly RT, Weiss RL. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 1972; 84: 54–68.Google Scholar
  38. 38.
    Segerer A, Neuner A, Kristjansson JK et al. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 1986; 36:559-564.Google Scholar
  39. 39.
    Huber G, Spinnler C, Gambacorta A et al. Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. System Appl Microbiol 1989; 12:38-47.Google Scholar
  40. 40.
    Zillig W, Kletzin A, Schleper C et al. Screening for Sulfobales, their plasmids and their viruses. In: Pfeifer F, Palm P. Schleifer K-H, eds. Molecular Biology of Archaea. Stuttgart: Fischer, 1994: 109–128.Google Scholar
  41. 41.
    Kargi F, Robinson JM. Removal of sulfur compounds from coal by the thermophilic organisms Sulfolobus acidocaldarius. Appl Environ Microbiol 1982; 44: 878–883.PubMedGoogle Scholar
  42. 42.
    Larsson L, Olsson G, Holst O et al. Pyrite oxidation by thermophilic archaebacteria. Appl Environ Microbiol 1990; 56: 697–701.PubMedGoogle Scholar
  43. 43.
    Fuchs T, Huber H, Burggraf S et al. 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. System Appl Microbiol 1996; 19: 56–60.CrossRefGoogle Scholar
  44. 44.
    Norris PR, Parrott L. High temperature, mineral concentrate dissolution with Sulfolobus. In: Lawrence RW, Branion RMR, Ebner HG, eds. Fundamental and Applied Biohydrometallurgy. Amsterdam: Elsevier, 1986:355–365.Google Scholar
  45. 45.
    Le Roux NW, Wakerley DS. Leaching of chalcopyrite (CuFeS2) at 70°C using Sulfolobus. In: Norris PR, Kelly DP, eds. Biohydrometallurgy, Proc Int Symp. Kew: Science and Technology Letters, 1988: 305–317Google Scholar
  46. 46.
    Liu X, Lindström EB, Petersson S. Bioleaching of refractory arsenical pyrite concentrates to enhance gold recovery. Scandanavian J Metallurgy 1991; 20:346-350.Google Scholar
  47. 47.
    Barr DW, Jordan MA, Norris PR et al. An investigation into bacterial cell, ferrous iron, pH and Eh interactions during thermophilic leaching of copper concentrates. Minerals Engineering 1992; 5:557–567.Google Scholar
  48. 48.
    Huber G, Stetter KO. Sulfolobus metallicus,sp. nov., a novel strictly chemolithotrophic thermophilic archaeal species of metal-mobilizers. System Appl Microbiol 1991; 14:372–378.Google Scholar
  49. 49.
    Wood AP, Kelly DP. Growth and sugar metabolism of a thermoacidophilic iron-oxidizing mixotrophic bacterium. Microbiology 1984; 130:1337–1349.Google Scholar
  50. 50.
    Wood AP, Kelly DP, Norris PR. Autotrophic growth of four Sulfolobus strains on tetrathionate and the effect of organic nutrients. Arch Microbiol 1986; 146: 382–389.CrossRefGoogle Scholar
  51. 51.
    Norris PR, Nixon A, Hart A. Acidophilic, mineral-oxidizing bacteria: the utilization of carbon dioxide with particular reference to autotrophy in Sulfolobus. In: de Costa MS, Duarte JC, Williams RAD, eds. Microbiology of Extreme Environments and Its Potential for Biotechnology. London: Elsevier, 1989: 24–43.Google Scholar
  52. 52.
    Ishii M, Miyake T, Satoh T et al. Autotrophic carbon dioxide fixation in Acidianus brierleyi. Arch Microbiol 1997; 166: 368–371.CrossRefGoogle Scholar
  53. 53.
    Nixon A, Norris PR. Autotrophic growth and inorganic sulfur compound oxidation by Sulfolobus species in chemostat culture. Arch Microbiol 1992; 157: 155–160.Google Scholar
  54. 54.
    Hallberg KB, Dopson M, Lindström EB. Reduced sulfur compound oxidation by Thiobacillus caldus. J Bacteriol 1996; 178: 6–11.PubMedGoogle Scholar
  55. 55.
    Emmel T, Sand W, König WA et al. Evidence for the existence of a sulfur oxygenase in Sulfolobus brierleyi. J Gen Microbiol 1986; 132:3415–3420.Google Scholar
  56. 56.
    Kletzin A. Sulfur oxidation and reduction in archaea: sulfur oxygenase/reductase and hydrogenase from the extremely thermophilic and facultatively anaerobic archaeon Desulfurolobus ambivalens. In: Pfeifer F, Palm P. Schleifer K-H, eds. Molecular Biology of Archaea. Stuttgart: Fischer, 1994:34–43.Google Scholar
  57. 57.
    Barr DW, Ingledew WJ, Norris PR. Respiratory chain components of iron-oxidizing, acidophilic bacteria. FEMS Microbiol Lett 1990; 70: 85–90.CrossRefGoogle Scholar
  58. 58.
    Blake R, Shute EA, Waskovsky J et al. Respiratory components in acidophilic bacteria that respire on iron. Geomicrobiol J 1992; 10: 173–192.CrossRefGoogle Scholar
  59. 59.
    Burton NP, Williams TD, Norris PR. A potential anti-oxidant protein in a ferrous iron-oxidizing Sulfolobus species. FEMS Microbiol Lett 1995; 134: 91–95.Google Scholar
  60. 60.
    Jerez CA. The heat shock response in meso-and thermoacidophilic chemolithotrophic bacteria. FEMS Microbiol Lett 1988; 56:289-294.Google Scholar
  61. 61.
    Peeples TL, Kelly RM. Bioenergetic response of the extreme thermoacidophile Metallosphaera sedula to thermal and nutritional stress. Appl Environ Microbiol 1995; 61: 2314–2321.PubMedGoogle Scholar
  62. 62.
    Burton NP, Gibson FE, Murrell JC et al. Development of genetic systems for moderately thermophilic, mineral sulfide-oxidizing bacteria. In: Alberghina L, Frontali L, Sensi P, eds. Proceedings of the 6th European Congress on Biotechnology. Amsterdam: Elsevier 1994 1169–1172.Google Scholar
  63. 63.
    Zillig W, Prangishvilli D, Schleper C et al. Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol Rev 1996; 18: 225–236.PubMedCrossRefGoogle Scholar
  64. 64.
    Clark DA, Norris PR. Oxidation of mineral sulfides by thermophilic microorganisms. Minerals Engineering 1996; 9: 1119–1125.CrossRefGoogle Scholar
  65. 65.
    Hutchins SR, Brierley JA, Brierley CL. Microbial pretreatment of refractory sulfide and carbonaceous gold ores. In: Vassiliou AH, Hausen DM, Carson DJT, eds. Process Mineralogy VII. Warrendale, PA: The Metallurgical Society, 1987: 53–66.Google Scholar
  66. 66.
    Liu X, Petersson S, Sandström A. Mesophilic versus moderate thermophilic bioleaching. In: Torma AE, Wey JE, Lakshmanan VI, eds. Biohydrometallurgical Technologies. Vol 1. Warrendale, PA: The Minerals, Metals & Materials Society, 1993: 29–38.Google Scholar
  67. 67.
    Lindström EB, Wold S, Kettanch-Wold N et al. Optimization of pyrite bioleaching using Sulfolobus acidocaldarius. Appl Microbiol Biotechnol 1993; 38: 702–707.Google Scholar
  68. 68.
    Norris PR, Owen JP. Strain selection for high temperature oxidation of mineral sulfides in reactors. In: Ladisch MR, Bose A, eds. Harnessing Biotechnology for the 21st Century. Washington: American Chemical Society, 1992: 445–448.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Paul R. Norris

There are no affiliations available

Personalised recommendations