Biomaterials in Drug Delivery

  • Anthony M. Lowman
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


A major research thrust in the pharmaceutical and chemical industry is the development of controlled release systems for drugs and bioactive agents. Many of these delivery systems in use and under development consist of a drug dispersed within a polymeric carrier. These carriers are designed to release the drugs in a controlled fashion for times ranging from minutes to years.


Drug Release Ionic Contribution Control Release System Normalize Diffusion Coefficient Diffusional Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anseth, K.S., C.N. Bowman, L. Brannon-Peppas. Biomaterials 17: 1647–1657 (1996)CrossRefGoogle Scholar
  2. Berens, A. R., H. B. H.fenberg. Polymer 19, 490–496 (1978)Google Scholar
  3. Brannon-Peppas, L., N. A. Peppas. The equilibrium swelling behavior of porous and nonporous hydrogels. In L. Brannon-Peppas and R.S. Harland, eds. Absorbant Polymer Technology, 8. Elsevier, Amsterdam, 67–75 (1990)Google Scholar
  4. Brannon-Peppas, L., N. A. Peppas. J. Controlled Release. 16 (3): 319–329 (1991a)CrossRefGoogle Scholar
  5. Brannon-Peppas, L., N. A. Peppas. Chem. Eng. Sci. 46 (3): 715–722 (1991b)CrossRefGoogle Scholar
  6. Canal, T., N. A. Peppas. J. Biomed. Mater. Res. 23 (10): 1183–9113 (1989)CrossRefGoogle Scholar
  7. Ferry, J. D. Viscoelastic properties of polymers. Wiley, New York, (1980)Google Scholar
  8. Flory, P. J. Principles of Polymer Chemistry. Cornell University Press, Ithaca, (1953)Google Scholar
  9. Flory, P. J., J. Rehner. J. Chem. Phys. 11: 521–526 (1943)ADSCrossRefGoogle Scholar
  10. Fugita, H.. Fortschr. Hochpolym. Forsch. 3: 1–14 (1961)CrossRefGoogle Scholar
  11. Harland, R. S., N. A. Peppas. Colloid Polym. Sci. 267 (3): 218–225 (1989)CrossRefGoogle Scholar
  12. Heller, J. Zero-Order Drug Release from Bioerodible Polymers. In: J.M. Anderson and S.W. Kim, eds. Plenum Press, New York, 101–154 (1984)Google Scholar
  13. Heller, J., R. W. Baker. Theory and practice of controlled drug delivery from bioerodible polymers. In: R.W. Baker, ed., Controlled Release of Bioactive Materials. Academic Press, New York, 1–37 (1980)CrossRefGoogle Scholar
  14. Katchalsky, A. Experimentia 5: 319–320 (1949)CrossRefGoogle Scholar
  15. Langer, R., N. Peppas. J. Macromol. Sci. Rev. Macromol. Chem. Phys. C23 (1): 61–126 (1983)CrossRefGoogle Scholar
  16. Lowman, A. M., N. A. Peppas. Macromolecules 30(17):4959–4965 (1997)Google Scholar
  17. Lowman, A. M., N. A. Peppas. Polymer 41 (1): 73–80 (1999)Google Scholar
  18. Mikos, A. G., Y. Bao, L. G. Cima, D. E. Ingber, J. P. Vacanti, R. Langer. J. Biomed. Mat. Res. 27: 183–189 (1993)Google Scholar
  19. Narasimhan, B., N. A. Peppas. Controlled Drug Delivery 529–557 (1997)Google Scholar
  20. Peppas, N. Hydrogels in Medicine and Pharmacy. Vol. I: Fundamentals. CRC Press, Boca Raton, (1986)Google Scholar
  21. Peppas, N. A. J. Bioact. Compat. Polym. 6 (3): 241–246 (1991)CrossRefGoogle Scholar
  22. Peppas, N. A.. Fundamentals of pH- and temperature-sensitive delivery systems. In R. Gurny, H.E. Juninger and N.A. Peppas, eds., Pulsatile Drug Delivery 33:41–56 (1993)Google Scholar
  23. Peppas, N. A., B. D. Barr-Howell. Characterization of the cross-linked structure of hydrogels. In N.A. Peppas, N.A. Peppas, eds., Hydrogels in Medicine and Pharmacy. CRC Press, Boca Raton, 1:27–56 (1986)Google Scholar
  24. Peppas, N. A., D. L. Meadows. J. Membr. Sci. 16: 361–377 (1983)CrossRefGoogle Scholar
  25. Peppas, N. A., E. W. Merrill. J. Polym. Sci. Polym. Chem. Ed. 14(2):441–457 (1976)Google Scholar
  26. Peppas, N. A., A. G. Mikos. Preparation methods and structure of hydrogels. In N.A. Peppas, N.A. Peppas, eds. Hydrogels in Medicine and Pharmacy. CRC Press, Boca Raton, 1:1–25 (1986)Google Scholar
  27. Peppas, N. A., H. J. Moynihan. J. Appl. Polym. Sci. 30(6):2589–2606 (1985) Peppas, N. A., C. T. Reinhart. J. Membr. Sci. 15 (3): 275–287 (1983)CrossRefGoogle Scholar
  28. Peppas, N. A., C. T. Reinhart. J. Membr. Sci. 15 (3): 275–287 (1983)Google Scholar
  29. Price, F. P., P. T. Gilmore, E. L. Thomas, R. L. Laurence. J. Polym. Sci. Polym. Symp. 63: 33–44 (1978)CrossRefGoogle Scholar
  30. Ricka, J., T. Tanaka. Macromolecules 17: 2916–2921 (1984)ADSCrossRefGoogle Scholar
  31. Ritger, P. L., N. A. Peppas. J. Controlled Release 5 (1): 23–36 (1987)CrossRefGoogle Scholar
  32. Rubinstein, M., R. H. Colby, A. V. Dobrynin, J. F. J.anny. Macromolecules 29: 398–426 (1996)ADSCrossRefGoogle Scholar
  33. Sahlin, J. J., N. A. Peppas. J. Biomater. Sci. Polym. Ed. 8(6):421–436 (1997)Google Scholar
  34. Schroder, U. P., W. Opperman. Properties of Polyelectrolyte Gels. The Physical Properties of Polymeric Gels. New York: Wiley, pp. 19–38 (1996)Google Scholar
  35. Skouri, R., F. Schoesseler, J. P. Munch, S. J. Candau. Macromolecules 28: 197–210 (1995)ADSCrossRefGoogle Scholar
  36. Stilbs, P. Prog. NMR Spectros. 19: 1–45 (1987)CrossRefGoogle Scholar
  37. Stock, R. S., W. H. Ray. J. Polym. Sci. Phys. Ed. 23:1393–1447 (1985)Google Scholar
  38. Tanaka, T.. Polymer 20: 1404–1412 (1979)CrossRefGoogle Scholar
  39. Treloar, L. R. G. The Physics of Rubber Elasticity. Clarendon Press, Oxford, (1967)Google Scholar
  40. Winslow, D. N. Advances in experimental techniques for mercury intrusion porosimetry. Surface and Colloid Science. Plenum Press, NY, pp. 259–282 (1984)Google Scholar
  41. Yasuda, H., A. Peterlin, C. K. Colton, K. A. Smith, E. W. Merrill. Die Makromol. Chem. 126: 177–186 (1969)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Anthony M. Lowman

There are no affiliations available

Personalised recommendations