Skip to main content

Motile Tubular Vacuole Systems

  • Chapter
Biology of the Fungal Cell

Part of the book series: The Mycota ((MYCOTA,volume 8))

Abstract

The tips of actively growing fungal hyphae contain an extensive reticulum of motile and interconnected tubules and spherical vacuoles (Shepherd et al. 1993a,b; Ashford 1998; Cole et al 1998). The system as a whole shows a range of morphologies, and the tubules exhibit several types of motility including tip extension and retraction, peristalsis-like motion and movement of varicosities. Tubular vacuoles are found in representatives of all major fungal groups (Rees et al. 1994). They were previously unrecognised because the tubules do not survive chemical fixation and round up irreversibly into strings of vesicles (Orlovich and Ashford 1993). Tubular vacuoles are preserved by freeze-substitution and elongate vacuolar profiles are described in virtually all fungal species that have been freeze-substituted (see Ashford 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe F, Horikoshi K (1998) Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro-(piezo) physiology. Extrernophiles 2:223–228

    Article  CAS  Google Scholar 

  • Allan VJ, Schroer TA (1999) Membrane motors. Curr Opin Cell Biol 11:476–482

    Article  PubMed  CAS  Google Scholar 

  • Allaway WG (1994) Microtubules and the cytoplasmic motile tubular vacuole system in Pisolithus tinctorius hyphae. In: Stephenson AG, Kao T-H (eds) Current topics in plant physiology, vol 12. Pollen-pistil interactions and pollen tube growth. American Society of Plant Physiology, MA, pp 265–267

    Google Scholar 

  • Allaway WG, Ashford AE (2001) Motile tubular vacuoles in extramatrical mycelium and sheath hyphae of ectomycorrhizal systems. Protoplasma 215:218–225

    Article  PubMed  CAS  Google Scholar 

  • Allaway WG, Ashford AE, Heath IB, Hardham AE (1997) Vacuolar reticulum in oomycete hyphal tips; an additional component of the Ca2+ regulatory system? Fungal Genet Biol 22:209–220

    Article  PubMed  CAS  Google Scholar 

  • Ashford AE (1998) Dynamic pleiomorphic vacuoles: are they endosomes and transport compartments in fungal hyphae? Adv Bot Res 28:119–159

    Article  Google Scholar 

  • Ashford AE, Orlovich DA (1994) Vacuole transport, phosphorus, and endosomes in the growing tips of fungal hyphae. In: Stephenson AG, Kao T-H (eds) Current topics in plant physiology, vol 12. Pollen-pistil interactions and pollen tube growth. American Society of Plant Physiology, MA, pp 135–149

    Google Scholar 

  • Ashford AE, Peterson RL, Dwarte D, Chilvers GA (1986) Polyphosphate granules in eucalypt mycorrhizas: determination by energy dispersive X-ray microanalysis. Can J Bot 64:677–687

    Article  CAS  Google Scholar 

  • Ashford AE, Ryde S, Barrow KD (1994) Demonstration of a short chain polyphosphate in Pisolithus tinctorius and the implications for phosphorus transport. New Phytol 126:239–247

    Article  CAS  Google Scholar 

  • Ashford AE, Vesk PA, Orlovich DA, Markovina A-L, Allaway WG (1999) Dispersed polyphosphate in fungal vacuoles of Eucalyptus pilularis/Pisolithus tinctorius ectomycorrhizas. Fungal Genet Biol 28:21–33

    Article  PubMed  CAS  Google Scholar 

  • Bachewich C, Heath IB (1999) Cytoplasmic migrations and variolation are associated with growth recovery in hyphae of Saprolegnia, and are dependent on the cytoskeleton. Mycol Res 103:849–858

    Article  Google Scholar 

  • Basrai MA, Naider F, Becker JM (1990) Internalization of lucifer yellow in Candida albicans by fluid phase endocytosis. J Gen Microbiol 136:1059–1065

    PubMed  CAS  Google Scholar 

  • Bennett MK (1995) SNAREs and the specificity of transport vesicle targeting. Curr Opin Cell Biol 7:581–586

    Article  PubMed  CAS  Google Scholar 

  • Bethmann B, Thaler M, Simonis W, Schonknecht G (1995) Electrochemical potential gradients of H+, K+, Ca2+ and Cl- across the tonoplast of the green alga Eremo-sphaera viridis. Plant Physiol 109:1317–1326

    PubMed  CAS  Google Scholar 

  • Blatt MR, Leyman B, Geelen D (1999) Molecular events of vesicle trafficking and control by SNARE proteins in plants. New Phytol 144:389–418

    Article  CAS  Google Scholar 

  • Boevink P, Santa Cruz S, Hawes C, Harris N, Oparka KJ (1996) Virus-mediated delivery of the green fluorescent protein to the endoplasmic reticulum of plant cells. Plant J 10:935–941

    Article  CAS  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  PubMed  CAS  Google Scholar 

  • Boller T, Wiemken A (1986) Dynamics of vacuolar com-partmentation. Ann Rev Plant Physiol 37:137–164

    Article  CAS  Google Scholar 

  • Bourett TM, Howard RJ (1994) Enhanced labelling of concanavalin A binding sites in fungal membranes using a double-sided, indirect method. Mycol Res 98: 769–775

    Article  Google Scholar 

  • Bourett TM, Picollelli MA, Howard RJ (1993) Postembedment labelling of intracellular concanavalin A binding sites in freeze-substituted fungal cells. Exp Mycol 17:223–235

    Article  Google Scholar 

  • Bourett TM, Czymmek KJ, Howard RJ (1998) An improved method for affinity probe localization in whole cells of filamentous fungi. Fungal Genet Biol 24:3–13

    Article  PubMed  CAS  Google Scholar 

  • Bowman EJ, O’Neill FJ, Bowman BJ (1997) Mutations of pma-1, the gene encoding the plasma membrane H+-ATPase of Neurospora crassa, suppress inhibition of growth by Concanamycin A, a specific inhibitor of vacuolar ATPases. J Biol Chem 272:14776–14786

    Article  PubMed  CAS  Google Scholar 

  • Bryant NJ, Stevens TH (1998) Vacuole biogenesis in Sac-charomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 62:230–247

    PubMed  CAS  Google Scholar 

  • Bryant NJ, Piper RC, Weisman LS, Stevens TH (1998) Retrograde traffic out of the yeast vacuole to the TGN occurs via the prevacuolar/endosomal compartment. J Cell Biol 142:651–663

    Article  PubMed  CAS  Google Scholar 

  • Bücking H, Heyser W (1997) Intracellular compartmenta-tion of phosphorus in roots of Pinus sylvestris L. and the implications for transfer processes in ectomycor-rhizae. In: Rennenberg H, Eschrich W, Zeiger H (eds) Trees — contributions to modern tree physiology. Backhuys Publishers, Leiden, pp 377–391

    Google Scholar 

  • Bücking H, Heyser W (1999) Elemental composition and function of polyphosphates in ectomycorrhizal fungi — an X-ray microanalytical study. New Phytol 103:31–39

    Google Scholar 

  • Bücking H, Beckmann S, Heyser W, Kottke I (1998) Elemental contents in vacuolar granules of ectomycorrhizal fungi measured by EELS and EDXS. A comparison of different methods and preparation techniques. Micron 29:53–61

    Article  Google Scholar 

  • Butt TM, Hoch HC, Staples RC, St Leger RJ (1989) Use of fluorochromes in the study of fungal cytology and differentiation. Exp Mycol 13:303–320

    Article  CAS  Google Scholar 

  • Calahorra M, Martínez GA, Hernández-Cruz A, Peña A (1998) Influence of monovalent cations on yeast cytoplasmic and vacuolar pH. Yeast 14:501–515

    Article  PubMed  CAS  Google Scholar 

  • Campbell CL, Thorsness PE (1998) Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments. J Cell Sci 111:2455–2464

    PubMed  CAS  Google Scholar 

  • Canny MJ, McCully ME (1986) Locating water-soluble vital stains in plant tissues by freeze-substitution and resin-embedding. J Microsc 142:63–70

    Article  Google Scholar 

  • Catlett NL, Weisman LS (1998) The terminal tail region of a yeast myosin-V mediates its attachment to vacuole membranes and sites of polarized growth. Proc Natl Acad Sci USA 95:14799–14804

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  • Chiang M-C, Chiang H-L (1998) Vid24p, a novel protein localized to the fructose-1,6-bisphosphatase-containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from the vesicles to the vacuole for degradation. J Cell Biol 140:1347–1356

    Article  PubMed  CAS  Google Scholar 

  • Clague MJ (1999) Membrane transport: take your fusion partners. Curr Biol 9:R258–260

    Article  Google Scholar 

  • Cole L (1989) Endocytosis and the transport of fluorescent probes in suspension-cultured plant cells. MSc thesis, Oxford Univ, Oxford

    Google Scholar 

  • Cole L, Coleman J, Evans D, Hawes C (1990) Internalisa-tion of fluorescein isothiocyanate and fluorescein isothiocyanate-dextran by suspension-cultured plant cells. J Cell Sci 96:721–730

    CAS  Google Scholar 

  • Cole L, Coleman J, Kearns A, Morgan G, Hawes C (1991) The organic anion transport inhibitor, probenecid, inhibits the transport of Lucifer Yellow at the plasma membrane and the tonoplast in suspension-cultured plant cells. J Cell Sci 99:545–555

    Google Scholar 

  • Cole L, Hyde G, Ashford AE (1997) Uptake and com-partmentalisation of fluorescent probes by Pisolithus tinctorius hyphae: evidence for an anion transport mechanism at the tonoplast but not for fluid-phase endocytosis. Protoplasma 199:18–29

    Article  CAS  Google Scholar 

  • Cole L, Orlovich DA, Ashford AE (1998) Structure, function and motility of vacuoles in filamentous fungi. Fungal Genet Biol 24:86–100

    Article  PubMed  Google Scholar 

  • Cole L, Davies D, Hyde GJ, Ashford AE (2000a) ER-Tracker dye and BODIPY-brefeldin A differentiate the endoplasmic reticulum and Golgi bodies from the tubular vacuole system in living hyphae of Pisolithus tinctorius. J Microsc 197:239–248

    Article  PubMed  CAS  Google Scholar 

  • Cole L, Davies D, Hyde GJ, Ashford AE (2000b) Brefeldin A affects radial growth, endoplasmic reticulum, Golgi bodies, tubular vacuole system and secretory pathway in Pisolithus tinctorius. Fungal Genet Biol 29:95–106

    Article  PubMed  CAS  Google Scholar 

  • Coleman JOD, Blake-Kalff MMA, Davies TGE (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151

    Article  Google Scholar 

  • Conibear E, Stevens TH (1998) Multiple sorting pathways between late Golgi and the vacuole in yeast. Biochim Biophys Acta 1404:211–230

    Article  PubMed  CAS  Google Scholar 

  • Cormack BP, Bertram G, Egerton M, Gow NAR, Falkow S, Brown AJP (1997) Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143:303–311

    Article  PubMed  CAS  Google Scholar 

  • Cowles CR, Odorizzi G, Payne GS, Emr SD (1997) The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 91:109–118

    Article  PubMed  CAS  Google Scholar 

  • Cramer CL, Vaughn LE, Davis RH (1980) Basic amino acids and inorganic polyphosphates in Neurospora crassa: independent regulation of vacuolar pools. J Bacteriol 142:945–952

    PubMed  CAS  Google Scholar 

  • Croopnick JB, Choi HC, Mueller DM (1998) The subcellular location of the yeast Saccharomyces cerevisiae homologue of the protein defective in the juvenile form of Batten disease. Biochem Biophys Res Commun 250:335–341

    Article  PubMed  CAS  Google Scholar 

  • Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. TIBS 20:448–455

    PubMed  CAS  Google Scholar 

  • Czymmek KJ, Bourett TM, Howard RJ (1996) Immunolocalization of tubulin and actin in thick-sectioned fungal hyphae after freeze-substitution fixation and methacrylate de-embedment. J Microsc 181:153–161

    Article  CAS  Google Scholar 

  • Darsow T, Rieder SE, Emr SD (1997) A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138:517–529

    Article  PubMed  CAS  Google Scholar 

  • Davies JM, Brownlee C, Jennings DH (1990) Measurement of intracellular pH in fungal hyphae using BCECF and digital image microscopy. Evidence for a primary proton pump in the plasmalemma of a marine fungus. J Cell Sci 96:731–736

    Google Scholar 

  • Davies KL, Davies MS, Francis D (1992) Vacuolar development in the root meristem of Festuca rubra L. New Phytol 121:581–585

    Article  Google Scholar 

  • Davies TGE, Steele SH, Walker DJ, Leigh R (1996) An analysis of vacuole development in oat aleurone protoplasts. Planta 198:356–364

    Article  CAS  Google Scholar 

  • Deng Y, Griffiths G, Storrie B (1991) Comparative behaviour of lysosomes and the pre-lysosome compartment (PLC) in in vivo cell fusion experiments. J Cell Sci 99:571–582

    PubMed  Google Scholar 

  • Di Sansebastiano G-P, Paris N, Marc-Martin S, Neuhaus J-M (1998) Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J 15:449–457

    Article  PubMed  Google Scholar 

  • Dunn KW, Maxfield FR (1992) Delivery of ligands from sorting endosomes to late endosomes occurs by maturation of sorting endosomes. J Cell Biol 117:301–310

    Article  PubMed  CAS  Google Scholar 

  • Dunn T, Gable K, Beeler T (1994) Regulation of cellular Ca2+ by yeast vacuoles. J Biol Chem 269:7273–7278

    PubMed  CAS  Google Scholar 

  • Fernández-Ábalos JM, Fox H, Pitt C, Wells B, Doonan JH (1998) Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans. Mol Microbiol 27:121–130

    Article  PubMed  Google Scholar 

  • Ferro-Novick S, Jahn R (1994) Vesicle fusion from yeast to man. Nature 370:191–193

    Article  PubMed  CAS  Google Scholar 

  • Forgac M (1998) Structure and function of the vacuolar (H+)-ATPases. FEBS Lett 440:258–263

    Article  PubMed  CAS  Google Scholar 

  • Frey B, Brunner I, Walther P, Scheidegger C, Zierold L (1997) Element localization in ultrathin cryosections of high-pressure frozen ectomycorrhizal spruce roots. Plant Cell Environ 20:929–937

    Article  CAS  Google Scholar 

  • Fricker MD, Oparka KJ (1999) Imaging techniques in plant transport: meeting review. J Exp Bot 50:1089–1100

    CAS  Google Scholar 

  • Futter CE, Pearse A, Hewlett LJ, Hopkins CR (1996) Multivesicular endosomes containing internalised EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J Cell Biol 132:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Gadian DG (1982) Nuclear magnetic resonance and its applications to living systems. Oxford Univ Press, New York

    Google Scholar 

  • Gaynor EC, Chen C-Y, Emr SD, Graham TR (1998) ARF is required for maintenance of yeast Golgi and endosome structure and function. Mol Biol Cell 9:653–670

    PubMed  CAS  Google Scholar 

  • Gerhardt B, Kordas TJ, Thompson CM, Patel P, Vida T (1998) The vesicle transport protein Vps33p is an ATP-binding protein that localizes to the cytosol in an energy-dependent manner. J Biol Chem 273: 15818–15829

    Article  PubMed  CAS  Google Scholar 

  • Gerlitz TGM, Gerlitz A (1997) Phosphate uptake and polyphosphate metabolism of mycorrhizal and non-mycorrhizal roots of pine and of Suillus bovinus at varying external pH measured by in vivo 31P-NMR. Mycorrhiza 7:101–106

    Article  CAS  Google Scholar 

  • Gerlitz TGM, Werk WB (1994) Investigations on phosphate uptake and polyphosphate metabolism by myc-orrhized and nonmycorrhized roots of beech and pine as investigated by in vivo 31P-NMR. Mycorrhiza 4: 207–214

    Article  CAS  Google Scholar 

  • Gerst JE (1999) SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell Mol Life Sci 55: 707–734

    Article  PubMed  CAS  Google Scholar 

  • Gomes de Mesquita DS, Ten Hoopen R, Woldringh CL (1991) Vacuolar segregation to the bud of Saccharomyces cerevisiae: an analysis of morphology and timing in the cell cycle. J Gen Microbiol 137:2447–2454

    Google Scholar 

  • Götte M, Lazar T (1999) The ins and outs of yeast vacuole trafficking. Protoplasma 209:9–18

    Article  PubMed  Google Scholar 

  • Grellier B, Strullu DG, Martin F, Renaudin S (1989) Synthesis in vitro, microanalysis and 31P NMR study of metachromatic granules in birch mycorrhizas. New Phytol 112:49–54

    Article  CAS  Google Scholar 

  • Gruenberg J, Maxfield FR (1995) Membrane transport in the endocytic pathway. Curr Opin Cell Biol 7:552–563

    Article  PubMed  CAS  Google Scholar 

  • Guthrie BA, Wickner W (1988) Yeast vacuoles fragment when microtubules are disrupted. J Cell Biol 107:115–120

    Article  PubMed  CAS  Google Scholar 

  • Haas A (1995) A quantitative assay to measure homotypic vacuole fusion in vitro. Methods Cell Sci 17:283–294

    Article  Google Scholar 

  • Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N (1998) Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol 141:51–59

    Article  PubMed  CAS  Google Scholar 

  • Haugland RP (1999) Handbook of fluorescent probes and research chemicals, 7th edn. Molecular Probes, Eugene, OR (http://www.PROBES.com)

    Google Scholar 

  • Herr FB, Heath MC (1982) The effects of antimicrotubule agents on organelle positioning in the cowpea rust fungus Uromyces phaseoli var. vignae. Exp Mycol 6:15–24

    Article  CAS  Google Scholar 

  • Heuser J (1989) Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J Cell Biol 108:855–864

    Article  PubMed  CAS  Google Scholar 

  • Hicke L, Zanolari B, Pypaert M, Rohrer J, Riezman H (1997) Transport through the yeast endocytic pathway occurs through morphologically distinct compartments and requires an active secretory pathway and Sec18p/n-ethylmaleimide-sensitive fusion protein. Mol Biol Cell 8:13–31

    PubMed  CAS  Google Scholar 

  • Hill KL, Catlett NL, Weisman LS (1996) Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae. J Cell Biol 135:1535–1549

    Article  PubMed  CAS  Google Scholar 

  • Hillmer SL, Quader H, Robert-Nicoud M, Robinson DG (1989) Lucifer yellow uptake in cells and protoplasts of Daucas carota visualized by laser scanning microscopy. J Exp Biol 40:417–423

    CAS  Google Scholar 

  • Hinde P, Richardson P, Koyro H-W, Tomos AD (1998) Quantitative X-ray microanalysis of solutes in individual plant cells: a comparison of microdroplet and in situ frozen-hydrated data. J Microsc 191:303–310

    Article  PubMed  CAS  Google Scholar 

  • Hoch HC (1990) Preservation of cell ultrastructure by freeze-substitution. In: Mendgen K, Lesemann D-E (eds) Electron microscopy of plant pathogens. Springer, Berlin Heidelberg New York, pp 1–16

    Google Scholar 

  • Hoch HC, Staples RC (1985) The microtubule cytoskele-ton in hyphae of Uromyces phaseoli germlings: its relationship to the region of nucleation and to the F-actin cytoskeleton. Protoplasma 124:112–122

    Article  CAS  Google Scholar 

  • Hoffmann J, Mendgen K (1998) Endocytosis and membrane turnover in the germ tube of Uromyces fabae. Fungal Genet Biol 24:77–85

    Article  PubMed  Google Scholar 

  • Hollenbeck PJ, Swanson JA (1990) Radial extension of macrophage tubular lysosomes supported by kinesin. Nature 346:864–866

    Article  PubMed  CAS  Google Scholar 

  • Hopkins CR, Gibson A, Shipman M, Miller K (1990) Movement of internalized iigand-receptor complexes along a continuous endosomal reticulum. Nature 346: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Horazdovsky BF, DeWald DB, Emr SD (1995) Protein transport to the yeast vacuole. Curr Opin Cell Biol 7:544–551

    Article  PubMed  CAS  Google Scholar 

  • Hyde GJ (1998) Calcium imaging: a primer for mycologists. Fungal Genet Biol 24:14–23

    Article  PubMed  CAS  Google Scholar 

  • Hyde GJ, Ashford AE (1997) Vacuole motility and tubule-forming activity in Pisolithus tinctorius hyphae are modified by environmental conditions. Protoplasma 198:85–92

    Article  Google Scholar 

  • Hyde GJ, Heath IB (1997) Ca2+ gradients in hyphae and branches of Saprolegnia ferax. Fungal Genet Biol 21:238–251

    Article  CAS  Google Scholar 

  • Hyde GJ, Cole L, Ashford AE (1997) Mycorrhiza movies. Mycorrhiza 7:167–169

    Article  Google Scholar 

  • Hyde GJ, Davies D, Perasso L, Cole L, Ashford AE (1999) Microtubules but not actin microfilaments regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius. Cell Motil Cytoskeleton 42:114–124

    Article  PubMed  CAS  Google Scholar 

  • Jackson SL, Heath IB (1993) Roles of calcium ions in hyphal tip growth. Microbiol Rev 57:367–382

    PubMed  CAS  Google Scholar 

  • Jahn R, Sudhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911

    Article  PubMed  CAS  Google Scholar 

  • Jahraus A, Storrie B, Griffiths G, Desjardins M (1994) Evidence for retrograde traffic between terminal lysosomes and the prelysosomal/late endosomal compartment. J Cell Sci 107:145–157

    PubMed  CAS  Google Scholar 

  • Jones EW, Webb GC, Hiller MA (1997) Biogenesis and function of the yeast vacuole. In: Pringle JR, Broach JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces, vol 3. Cell cycle and cell biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 363–470

    Google Scholar 

  • Jones HD, Schliwa M, Drubin DG (1993) Video microscopy of organelle inheritance and motility in budding yeast. Cell Motil Cytoskeleton 25:129–142

    Article  PubMed  CAS  Google Scholar 

  • Kametaka S, Okano T, Ohsumi M, Ohsumi Y (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 273:22284–22291

    Article  PubMed  CAS  Google Scholar 

  • Kanamori K, Legerton TL, Weiss RL, Roberts JD (1982) Nitrogen-15 spin-lattice relaxation times of amino acids in Neurospora crassa as a probe of intracellular environment. Biochemistry 21:4916–4920

    Article  PubMed  CAS  Google Scholar 

  • Kane PM, Yamashiro CT, Stevens TH (1989) Biochemical characterisation of the yeast vacuolar H+-ATPase. J Biol Chem 264:19236–19244

    PubMed  CAS  Google Scholar 

  • Keenan KA, Utzat CD, Zielinski TK (1998) Isolation and characterization of strains defective in vacuolar ornithine permease in Neurospora crassa. Fungal Genet Biol 23:237–247

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto K, Yoshizawa K, Ohsumi Y, Anraku Y (1988a) Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J Bacteriol 170:2683–2686

    PubMed  CAS  Google Scholar 

  • Kitamoto K, Yoshizawa K, Ohsumi Y, Anraku Y (1988b) Mutants of Saccharomyces cerevisiae with defective vacuolar function. J Bacteriol 170:2687–2691

    PubMed  CAS  Google Scholar 

  • Klausner RD, Donaldson JG, Lippincott-Schwartz J (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116: 1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ (1998) Nonclassical protein sorting to the yeast vacuole. J Biol Chem 273:10807–10810

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54:266–292

    PubMed  CAS  Google Scholar 

  • Knapp PE, Swanson JA (1990) Plasticity of the tubular lysosome compartment in macrophages. J Cell Sci 95:433–439

    PubMed  Google Scholar 

  • Lang T, Schaeffeler E, Bernreuther D, Bredschneider M, Wolf DH, Thumm M (1998) Aut2p and Aut7p, two novel microtubule-associated proteins, are essential for delivery of autophagic vesicles to the vacuole. EMBO J 17:3579–3607

    Google Scholar 

  • Lazof D, Laüchli A (1991) Complementary analysis of freeze-dried and frozen-hydrated plant tissue by electron-probe X-ray microanalysis: spectral resolution and analysis of calcium. Planta 184:327–333

    CAS  Google Scholar 

  • Lazzaro MD, Thomson WW (1996) The vacuolar-tubular continuum in living trichomes of chickpea (Cicer arietinum) provides a rapid means of solute delivery from base to tip. Protoplasma 193:181–190

    Article  Google Scholar 

  • Lee RB, Ratcliffe RG (1983) Phosphorus nutrition and the intracellular distribution of inorganic phosphate in pea root tips: a quantitative study using 31P NMR. J Exp Bot 34:1222–1244

    Article  CAS  Google Scholar 

  • Legerton TL, Kanamori K, Weiss RL, Roberts JD (1983) Measurements of cytoplasmic and vacuolar pH in Neurospora using nitrogen-15 nuclear magnetic resonance spectroscopy. Biochemistry 22:899–903

    Article  PubMed  CAS  Google Scholar 

  • Leigh RA (1997) Solute composition of vacuoles. In: Leigh RA, Sanders D (eds) The plant vacuole. Adv Bot Res, vol 25. Academic Press, New York, pp 171–194

    Chapter  Google Scholar 

  • Lewis MJ, Nichols BJ, Prescianotto-Baschong C, Riezman H, Pelham HRB (2000) Specific retrieval of the exo-cytic SNARE Snc1p from yeast early endosomes. Mol Biol Cell 11:23–38

    PubMed  CAS  Google Scholar 

  • Ligrone R, Duckett JG (1994) Cytoplasmic polarity and endoplasmic microtubules associated with the nucleus and organelles are ubiquitous features of food-conducting cells in bryoid mosses (Bryophyta). New Phytol 127:601–614

    Article  Google Scholar 

  • Ligrone R, Duckett JG (1998) The leafy stems of Sphagnum (Bryophyta) contain highly differentiated polarized cells with axial arrays of endoplasmic microtubules. New Phytol 140:567–579

    Article  Google Scholar 

  • Linner JG, Bennett SC, Harrison DS, Steiner AL (1986a) Cryopreparation of tissue for electron microscopy. In: Muller M, Becker RP, Boyde A, Wolosewicke JJ (eds) Science of biological specimen preparation. SEM Inc, AMF O’Hare, Chicago, pp 165–174

    Google Scholar 

  • Linner JG, Livesey SA, Harrison DS, Steiner AL (1986b) A new technique for removal of amorphous phase tissue water without ice crystal damage: a preparative method for ultrastructure analysis and immunoelec-tron microscopy. J Histochem Cytochem 34:1123–1135

    Article  PubMed  CAS  Google Scholar 

  • Marshall AT, Xu W (1998) Quantitative elemental X-ray imaging of frozen-hydrated biological samples. J Microsc 190:305–316

    Article  PubMed  CAS  Google Scholar 

  • Martin F (1991) Nuclear magnetic resonance studies in ectomycorrhizal fungi. Methods Microbiol 23:121–148

    Article  CAS  Google Scholar 

  • Martin F, Rubini P, Côté R, Kottke I (1994) Aluminium polyphosphate complexes in the mycorrhizal basid-iomycete Lacearía bicolor: a 27Al-nuclear magnetic resonance study. Planta 194:241–246

    Article  CAS  Google Scholar 

  • Martinoia E, Heck U, Boller TH, Wiemken A, Matile PH (1979) Some properties of vacuoles isolated from Neurospora crassa slime variant. Arch Microbiol 120: 31–34

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) An ATP-dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364:247–249

    Article  CAS  Google Scholar 

  • Mayer A (1999) Intracellular membrane fusion: SNARES only? Curr Opin Cell Biol 11:447–452

    Article  PubMed  CAS  Google Scholar 

  • McCully ME, Canny MJ (1985) The stabilization of labile configurations of plant cytoplasm by freeze-substitution. J Microsc 139:27–33

    Article  Google Scholar 

  • Mendgen K, Bachern U, Stark-Urnau M, Xu H (1995) Secretion and endocytosis at the interface of plants and fungi. Can J Bot 73:S640–648

    Article  Google Scholar 

  • Mersey B, McCully ME (1978) Monitoring the course of fixation of plant cells. J Microsc 114:49–76

    Article  Google Scholar 

  • Miller AJ (1994) Ion-selective microelectrodes. In: Harris NJ, Oparka K (eds) Plant cell biology — a practical approach. IRL Press, Oxford, pp 283–296

    Google Scholar 

  • Monaghan P, Perusinghe N, Müller M (1998) High-pressure freezing for immunocytochemistry. J Microsc 192:248–258

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N, Hirata A, Ohsumi Y, Wada Y (1997) Vam2/Vps41p and Vam6/Vps39p are components of a protein complex on the vacuolar membranes and involved in the vacuolar assembly in the yeast Saccharomyces cerevisiae. J Biol Chem 272:11344–11349

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Klionsky DJ (1996) Vacuolar H+-ATPase: from mammals to yeast and back. Experientia 52:1101–1110

    Article  PubMed  CAS  Google Scholar 

  • Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H+-ATPase causes conditional lethality. Proc Natl Acad Sci USA 87:3503–3507

    Article  PubMed  CAS  Google Scholar 

  • Nichols BJ, Ungermann C, Pelham HR, Wickner WT, Haas A (1997) Homotypic fusion mediated by t- and v-SNAREs. Nature 387:199–202

    Article  PubMed  CAS  Google Scholar 

  • Odorizzi G, Cowles CR, Emr SD (1998) The AP-3 complex: a coat of many colours. Trends Cell Biol 8:282–288

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ (1991) Uptake and compartmentation of fluorescent probes by plant cells. J Exp Bot 42:565–579

    Article  CAS  Google Scholar 

  • Oparka KJ, Hawes CJ (1992) Vacuolar sequestration of fluorescent probes in plant cells. J Microsc 166:15–27

    Article  CAS  Google Scholar 

  • Oparka KJ, Cole L, Wright KM, Hawes CJ, Coleman JOD (1991) Fluid-phase endocytosis and the subcellular distribution of fluorescent probes in plant cells. In: Hawes CR, Coleman JOD, Evans DE (eds) Endocytosis, exocytosis and vesicle traffic in plants. Cambridge Univ Press, Cambridge, pp 81–102

    Google Scholar 

  • Orci L, Palmer DJ, Ravazzola M, Perrelet A, Amherdt M, Rothman JE (1993) Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins. Nature 362:648–652

    Article  PubMed  CAS  Google Scholar 

  • Orlovich DA, Ashford AE (1993) Polyphosphate granules are an artefact of specimen preparation in the ecto-mycorrhizal fungus Pisolithus tinctorius. Protoplasma 173:91–105

    Article  CAS  Google Scholar 

  • Orlovich DA, Ashford AE (1995) X-ray microanalysis of ion distribution in frozen salt/dextran droplets after freeze-substitution and embedding in anhydrous conditions. J Microsc 180:117–126

    Article  CAS  Google Scholar 

  • Palevitz BA, O’Kane DJ (1981) Epifluorescence and video analysis of vacuole motility and development in stom-atal cells of Allium. Science 214:443–445

    Article  PubMed  CAS  Google Scholar 

  • Palevitz BA, O’Kane DJ, Kobres RE, Raikhel NV (1981) The vacuole system in stomatal cells of Allium. Vacuole movements and changes in morphology in differentiating cells as revealed by epifluorescence, video and electron microscopy. Protoplasma 109: 23–55

    Article  Google Scholar 

  • Pan X, Goldfarb DS (1998) YEB3/VAC8 encodes a myristy-lated armadillo protein of the Saccharomyces cerevisiae vacuolar membrane that functions in vacuole fusion and inheritance. J Cell Sci 111:2137–2147

    PubMed  CAS  Google Scholar 

  • Parton RG, Schrotz P, Bucci C, Gruenberg J (1992) Plasticity of early endosomes. J Cell Sci 103:335–348

    PubMed  Google Scholar 

  • Parton RM, Read ND (1998) Calcium and pH imaging in living cells. In: Lacey AJ (ed) Light microscopy in biology — a practical approach. IRL Press, Oxford

    Google Scholar 

  • Pelham HRB (1999a) SNAREs and the secretory pathway — lessons from yeast. Exp Cell Res 247:1–8

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1999b) The Croonian lecture 1999. Intracellular membrane traffic: getting proteins sorted. Philos Trans R Soc Lond B Biol Sci 354:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer SR (1996) Transport vesicle docking: SNAREs and associates. Annu Rev Cell Biol 12:441–461

    Article  CAS  Google Scholar 

  • Prescianotto-Baschong C, Riezman H (1998) Morphology of the yeast endocytic pathway. Mol Biol Cell 9:173–189

    PubMed  CAS  Google Scholar 

  • Preston RA, Murphy RF, Jones EW (1989) Assay of vacuolar pH in yeast and identification of acidification-defective mutants. Proc Natl Acad Sci USA 86: 7027–7032

    Article  PubMed  CAS  Google Scholar 

  • Price A, Wickner W, Ungermann C (2000a) Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion. J Cell Biol 148:1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Price A, Seals D, Wickner W, Ungermann C (2000b) The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J Cell Biol 148:1231–1238

    Article  PubMed  CAS  Google Scholar 

  • Pryer NK, Wuestehube LJ, Schekman R (1992) Vesicle-mediated sorting. Annu Rev Biochem 61:471–516

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe RG (1994) In vivo NMR studies of higher plants and algae. Adv Bot Res 20:43–123

    Article  CAS  Google Scholar 

  • Raths S, Rohrer J, Crausaz F, Riezman H (1993) end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae. J Cell Biol 120:55–65

    Article  PubMed  CAS  Google Scholar 

  • Raymond CK, O’Hará P, Eichinger G, Rothman JH, Stevens TH (1990) Molecular analysis of the yeast VPS3 gene and the role of its product in vacuolar protein sorting and vacuolar segregation during the cell cycle. J Cell Biol 111:877–892

    Article  PubMed  CAS  Google Scholar 

  • Raymond CK, Howald-Stevenson I, Vater C, Stevens TH (1992a) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3:1389–1402

    PubMed  CAS  Google Scholar 

  • Raymond CK, Roberts CJ, Moore KE, Howald I, Stevens TH (1992b) Biogenesis of the vacuole in Saccharomyces cerevisiae. Int Rev Cytol 139:59–120

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (1999) MRP subfamily ABC transporters from plants and yeast. J Exp Bot 50:895–913

    CAS  Google Scholar 

  • Read ND, Allan WTG, Knight H, Knight MR, Malhó R, Russel A, Shacklock PS, Trewavas AJ (1992) Imaging and measurement of cytosolic free calcium in plant and fungal cells. J Microsc 166:57–86

    Article  CAS  Google Scholar 

  • Rees B, Shepherd VA, Ashford AE (1994) Presence of a motile tubular vacuole system in different phyla of fungi. Mycol Res 98:985–992

    Article  Google Scholar 

  • Rieder SE, Banta LM, Köhrer K, McCaffery JM, Emr SD (1996) Multilamellar endosome-like compartment accumulates in yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell 7:985–999

    PubMed  CAS  Google Scholar 

  • Riezman H (1993) Yeast endocytosis. Trends Cell Biol 3:273–277

    Article  PubMed  CAS  Google Scholar 

  • Robinson JM, Karnovsky MJ (1991) Rapid-freezing cytochemistry: preservation of tubular lysosomes and enzyme activity. J Histochem Cytochem 39:787–792

    Article  PubMed  CAS  Google Scholar 

  • Robinson JM, Okada T, Castellot JJ Jr, Karnovsky MJ (1986) Unusual lysosomes in aortic smooth muscle cells: presence in living and rapidly frozen cells. J Cell Biol 102:1615–1622

    Article  PubMed  CAS  Google Scholar 

  • Rogers JC (1998) Compartmentation of plant cell proteins in separate lytic and protein storage vacuoles. J Plant Physiol 152:653–658

    Article  CAS  Google Scholar 

  • Rost FWD, Shepherd VA, Ashford AE (1995) Estimation of vacuolar pH in actively growing hyphae of the fungus Pisolithus tinctorius. Mycol Res 99:549–553

    Article  Google Scholar 

  • Roth AM, Sullivan DM, Davis NG (1998) A large PEST-like sequence directs the ubiquitination, endocytosis and vacuolar degradation of the yeast a-factor receptor. J Cell Biol 142:949–961

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372:55–63

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Raikhel NV (1999) The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell 11:629–641

    PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Ahmed SU, Marty-Mazars D, Rapoport I, Kirchhausen T, Marty F, Raikhel NV (1998) A putative vacuolar cargo receptor partially colocalizes with AtPEP12 on a prevacuolar compartment in Arabidopsis roots. Proc Natl Acad Sci USA 95:9920–9925

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Kovaleva V, Zheng H, Rapoport I, Raikhel NV (1999) The t-SNARE AtVAM3p resides on the prevacuolar compartment in Arabidopsis root cells. Plant Physiol 121:929–938

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Wickner W (1998) Functional reconstitution of Ypt7p GTPase and a purified vacuole SNARE complex. Science 281:700–702

    Article  PubMed  CAS  Google Scholar 

  • Sato MH, Nakamura N, Ohsumi Y, Kouchi H, Kondo M, Hara-Nishimura I, Nishimura M, Wada Y (1997) The AtVAM3 encodes a syntaxin-related molecule implicated in the vacuolar assembly in Arabidopsis thaliana. J Biol Chem 272:24530–24535

    Article  PubMed  CAS  Google Scholar 

  • Shepherd VA, Orlovich DA, Ashford AE (1993a) A dynamic continuum of pleiomorphic tubules and vacuoles in growing hyphae of a fungus. J Cell Sci 104:495–507

    Google Scholar 

  • Shepherd VA, Orlovich DA, Ashford AE (1993b) Cell-to-cell transport via motile tubules in growing hyphae of a fungus. J Cell Sci 105:1173–1178

    PubMed  Google Scholar 

  • Singer-Krüger B, Rainer F, Crausaz F, Riezman H (1993) Partial purification and characterization of early and late endosomes from yeast. J Biol Chem 268:14376–14386

    PubMed  Google Scholar 

  • Skepper J (2000) Immunocytochemical strategies for electron microscopy: choice or compromise. J Microsc 199:1–36

    Article  PubMed  CAS  Google Scholar 

  • Sonee M, Barrón E, Yarber FA, Hamm-Alvarez SF (1998) Taxol inhibits endosomal-lysosomal membrane trafficking at two distinct steps in CV-1 cells. Am J Physiol Cell Physiol 275:C1630–C1639

    Google Scholar 

  • Spellig T, Bottin A, Kahmann R (1996) Green fluorescent protein (GFP) as a vital new marker in the phytopathogenic fungus Ustilago mayáis. Mol Gen Genet 252:503–509

    PubMed  CAS  Google Scholar 

  • Stack JH, Horazdovsky BF, Emr SD (1995) Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP binding proteins. Annu Rev Cell Dev Biol 11:1–33

    Article  PubMed  CAS  Google Scholar 

  • Steinberg G, Schliwa M (1993) Organelle movements in the wild type and wall-less fz;sg;os-1 mutants of Neurospora crassa are mediated by cytoplasmic microtubules. J Cell Sci 106:555–564

    PubMed  Google Scholar 

  • Steinberg G, Schliwa M, Lehmler C, Bölker M, Kahmann R, Mcintosh JR (1998) Kinesin from the plant pathogenic fungus Ustilago Maydis is involved in vacuole formation and cytoplasmic migration. J Cell Sci 111:2235–2246

    PubMed  CAS  Google Scholar 

  • Steinberg TM, Newman AS, Swanson JA, Silverstein SC (1987) Macrophages possess probenecid-inhibitable organic anion transporters that remove fluorescent dyes from the cytoplasmic matrix. J Cell Biol 105:2695–2702

    Article  PubMed  CAS  Google Scholar 

  • Steinberg TM, Swanson JA, Silverstein SC (1988) A prelysosomal compartment sequesters membrane-impermeant fluorescent dyes from the cytoplasmic matrix of J774 macrophages. J Cell Biol 107:887–896

    Article  PubMed  CAS  Google Scholar 

  • Strayle J, Pozzan T, Rudolph HK (1999) Steady-state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 µM and is mainly controlled by the secretory pathway pump Pmr1. EMBO J 18:4733–4743

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653

    Article  PubMed  Google Scholar 

  • Swanson J (1989) Fluorescent labelling of endocytic compartments. Methods Cell Biol 29:137–151

    Article  PubMed  CAS  Google Scholar 

  • Swanson J, Burke E, Silverstein SC (1987a) Tubular lysosomes accompany stimulated pinocytosis in macrophages. J Cell Biol 104:1217–1222

    Article  PubMed  CAS  Google Scholar 

  • Swanson J, Bushnell A, Silverstein SC (1987b) Tubular lysosomes morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules. Proc Natl Acad Sci USA 84:1921–1925

    Article  PubMed  CAS  Google Scholar 

  • Swanson J, Locke A, Ansel P, Hollenbeck PJ (1992) Radial movement of lysosomes along microtubules in permeabilized macrophages. J Cell Sci 103:201–209

    PubMed  CAS  Google Scholar 

  • Tagu D, Martin F (1996) Molecular analysis of cell wall proteins expressed during the early steps of ectomycorrhizal development. New Phytol 133:73–85

    Article  CAS  Google Scholar 

  • Takei K, McPherson PS, Schmid SL, De Camilli P (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals. Nature 374:186–192

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Haucke V, Slepnev V, Farsad K, Salazar M, Chen H, De Camilli P (1998) Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94:131–141

    Article  PubMed  CAS  Google Scholar 

  • Terasaki M, Reese TS (1992) Characterization of endoplasmic reticulum by co-localization of BiP and dicarbocyanine dyes. J Cell Sci 101:315–322

    PubMed  CAS  Google Scholar 

  • Thompson-Coffe C, Zickler D (1992) Three microtubule-organizing centers are required for ascus growth and sporulation in the fungus Sordaria macrospora. Cell Motil Cytoskeleton 22:257–273

    Article  Google Scholar 

  • Thilo L, Stroud E, Haylett T (1995) Maturation of early endosomes and vesicular traffic to lysosomes in relation to membrane recycling. J Cell Sci 108:1791–1803

    PubMed  CAS  Google Scholar 

  • Tiwari SC, Polito VS (1988) Organisation of the cytoskeleton in pollen tubes of Pyrus communis: a study employing conventional and freeze-substitution electron microscopy, immunofluorescence, and rhodamine-phalloidin. Protoplasma 147:100–112

    Article  Google Scholar 

  • Tooze J, Hollinshead M (1991) Tubular early endosomal networks in AtT20 and other cells. J Cell Biol 115: 635–653

    Article  PubMed  CAS  Google Scholar 

  • Trey K, Sato TK, Darsow T, Emr SD (1998) Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol Cell Biol 18:5308–5319

    Google Scholar 

  • Tsien RY (1989) Fluorescent indicators of ion concentrations. In: Taylor DL, Wang YL (eds) Fluorescence microscopy of living cells in culture, part B. Quantitative fluorescence microscopy — imaging and spectroscopy. Methods Cell Biol 30X:127–156

    Chapter  Google Scholar 

  • Ungermann C, Wickner W (1998) Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO J 17:3269–3276

    Article  PubMed  CAS  Google Scholar 

  • Ungermann C, Nichols BJ, Pelham HRB, Wickner W (1998) A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J Cell Biol 140:61–69

    Article  PubMed  CAS  Google Scholar 

  • Ungermann C, Fischer von Mollard G, Jensen ON, Margolis N, Stevens TH, Wickner W (1999) Three v-SNAREs and two t-SNARES, present in a pen-tameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. J Cell Biol 145:1453–1442

    Article  Google Scholar 

  • van Deurs B, Holm PK, Kayser L, Sandvig K, Hansen SH (1993) Multivesicular bodies in HEp-2 cells are maturing endosomes. Eur J Cell Biol 61:208–224

    PubMed  Google Scholar 

  • van Deurs B, Holm PK, Kayser L, Sandvig K (1995) Delivery to lysosomes in the human carcinoma cell line HEp-2 involves an actin filament-facilitated fusion between mature endosomes and preexisting lysosomes. Eur J Cell Biol 66:309–323

    PubMed  Google Scholar 

  • van Deurs B, von Bulow F, Vilhardt F, Holm PK, Sandvig K (1996) Destabilization of plasma membrane structure by prevention of actin polymerization -microtubule-dependent tubulation of the plasma membrane. J Cell Sci 109:1655–1665

    PubMed  Google Scholar 

  • Vaughn LE, Davis RH (1981) Purification of vacuoles from Neurospora crassa. Mol Cell Biol 1:797–806

    PubMed  CAS  Google Scholar 

  • Verbelen JP, Tao W (1998) Mobile arrays of vacuole ripples are common in plant cells. Plant Cell Rep 17:917–920

    Article  CAS  Google Scholar 

  • Vesk P, Ashford AE, Markovina A-L, Allaway WG (2000) Apoplasmic barriers and their significance in the exodermis and sheath of Eucalyptus pilularisl Pisolithus tinctorius ectomycorrhizas. New Phytol 145: 333–346

    Article  Google Scholar 

  • Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792

    Article  PubMed  CAS  Google Scholar 

  • Vida TA, Huyer G, Emr SD (1993) Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment. J Cell Biol 121:1245–1256

    Article  PubMed  CAS  Google Scholar 

  • von Mollard GF, Nothwehr SF, Stevens TH (1997) The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pepl2p. J Cell Biol 137:1511–1524

    Article  Google Scholar 

  • Wada Y, Ohsumi Y, Anraku Y (1992) Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. I. Isolation and characterization of two classes of vam mutants. J Biol Chem 267:18665–18670

    PubMed  CAS  Google Scholar 

  • Wada Y, Nakamura N, Ohsumi Y, Hirata A (1997) Vam3p, a new member of syntaxin related protein, is required for vacuolar assembly in the yeast Saccharomyces cerevisiae. J Cell Sci 110:1299–1306

    PubMed  CAS  Google Scholar 

  • Waterman-Storer CM, Gregory J, Parsons SF, Salmon ED (1995) Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicu-lar networks in interphase Xenopus egg extracts. J Cell Biol 130:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Waters MG, Pfeffer SR (1999) Membrane tethering in intracellular transport. Curr Opin Cell Biol 11:440–446

    Article  Google Scholar 

  • Weidman P, Roth R, Heuser J (1993) Golgi membrane dynamics imaged by freeze-etch electron microscopy — views of different membrane coatings involved in tubulation versus vesiculation. Cell 75:123–133

    PubMed  CAS  Google Scholar 

  • Weisman LS, Wickner W (1988) Intervacuole exchange in the yeast zygote: a new pathway in organelle communication. Science 241:589–591

    Article  PubMed  CAS  Google Scholar 

  • Weisman LS, Bacallao R, Wickner W (1987) Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J Cell Biol 105:1539–1547

    Article  PubMed  CAS  Google Scholar 

  • Weisman LS, Emr SD, Wickner WT (1990) Mutants of Saccharomyces cerevisiae that block intervacuole vesicular traffic and vacuole division and segregation. Proc Natl Acad Sci USA 87:1076–1080

    Article  PubMed  CAS  Google Scholar 

  • Wiederkehr A, Avaro S, Prescianotto-Baschong C, Haguenauer-Tsapis R, Riezman H (2000) The F-box protein Rcy1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae. J Cell Biol 149:397–410

    Article  PubMed  CAS  Google Scholar 

  • Wilson TP, Canny MJ, McCully ME, Lefkovitch LP (1990) Breakdown of cytoplasmic vacuoles: a model of endo-membrane rearrangement. Protoplasma 155:144–152

    Article  Google Scholar 

  • Wink M (1993) The plant vacuole: a multifunctional compartment. J Exp Bot 44:231–246

    CAS  Google Scholar 

  • Wurmser AE, Emr SE (1998) Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J 17:4930–4942

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Wickner W (1996) Thioredoxin is required for vacuole inheritance in Saccharomyces cerevisiae. J Cell Biol 132:787–794

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Mayer A, Müller E, Wickner W (1997) A het-erodimer of thioredoxin and IB 2 cooperates with Secl8p (NSF) to promote yeast vacuole inheritance. J Cell Biol 136:299–306

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Sato K, Wickner W (1998) LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell 93:1125–1134

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro CT, Kane PM, Wolczyk DF, Preston RA, Stevens TH (1990) Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol Cell Biol 7:3737–3749

    Google Scholar 

  • Yamashita RA, May GS (1998) Motoring along the hyphae — molecular motors and the fungal cytoskeleton. Curr Opin Cell Biol 10:74–79

    Article  PubMed  CAS  Google Scholar 

  • Yin Z-H, Neimanis S, Wagner U, Heber U (1990) Light-dependent pH changes in leaves of C3 plants. I. Recording pH changes in various cellular compartments by fluorescent probes. Planta 182:244–252

    Article  Google Scholar 

  • Yoshida S (1995) Low-temperature-induced alkalization of vacuoles in suspension-cultured cells of mung bean (Vigna radiata [L.] Wilczek). Plant Cell Physiol 36:1075–1079

    CAS  Google Scholar 

  • Young N, Bullock S, Orlovich DA, Ashford AE (1993) Association of polyphosphate with protein in freeze-substituted sclerotia of Sclerotinia minor. Protoplasma 174:134–141

    Article  CAS  Google Scholar 

  • Zerez CR, Weiss RL, Franklin C, Bowman BJ (1986) The properties of arginine transport in vacuolar membrane vesicles of Neurospora crassa. J Biol Chem 261:8877–8882

    PubMed  CAS  Google Scholar 

  • Zheng B, Wu JN, Schober W, Lewis DE, Vida T (1998) Isolation of yeast mutants defective for localization of vacuolar vital dyes. Proc Natl Acad Sci USA 95: 11721–11726

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, von Mollard GF, Kovaleva V, Stevens TH, Raikhel NV (1999) The plant vesicle associated SNARE AtVTI1a likely mediates vesicle transport from the TGN to the prevacuolar compartment. Mol Biol Cell 10:2251–2264

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ashford, A.E., Cole, L., Hyde, G.J. (2001). Motile Tubular Vacuole Systems. In: Howard, R.J., Gow, N.A.R. (eds) Biology of the Fungal Cell. The Mycota, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06101-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06101-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06103-9

  • Online ISBN: 978-3-662-06101-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics