Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 283))

Abstract

The nonsegmented negative-strand (NNS) RNA viruses of the order Mononegavirales include a wide variety of human, animal, and plant pathogens. The NNS RNA genomes of these viruses are templates for two distinct RNA synthetic processes: transcription to generate mRNAs and replication of the genome via production of a positive-sense antigenome that acts as template to generate progeny negative-strand genomes. The four virus families within the Mononegavirales all express the information encoded in their genomes by transcription of discrete subgenomic mRNAs. The key feature of transcriptional control in the NNS RNA viruses is entry of the virus-encoded RNA-dependent RNA polymerase at a single 3′ proximal site followed by obligatory sequential transcription of the linear array of genes. Levels of gene expression are primarily regulated by position of each gene relative to the single promoter and also by cis-acting sequences located at the beginning and end of each gene and at the intergenic junctions. Obligatory sequential transcription dictates that termination of each upstream gene is required for initiation of downstream genes. Therefore, termination is a means to regulate expression of individual genes within the framework of a single transcriptional promoter. By engineering either whole virus genomes or subgenomic replicon derivatives, elements important for signaling transcript initiation, 5′ end modification, 3′ end polyadenylation, and transcription termination have been identified. Although the diverse families of NNS RNA virus use different sequences to control these processes, transcriptional termination is a common theme in controlling gene expression and overall transcriptional regulation is key in controlling the outcome of viral infection. The latest models for control of replication and transcription are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham G, Banerjee AK (1976) Sequential transcription of the genes of vesicular stomatitis virus. Proc Natl Acad Sci USA 73: 1504–1508

    PubMed  CAS  Google Scholar 

  • Abraham G, Rhodes DP, Banerjee AK (1975) The 5’ terminal structure of the methylated mRNA synthesized in vitro by vesicular stomatitis virus. Cell 5: 51–58

    PubMed  CAS  Google Scholar 

  • Ball LA (1977) Transcriptional mapping of vesicular stomatitis virus in vivo. J Virol 21: 411–414

    PubMed  CAS  Google Scholar 

  • Ball LA, Pringle CR, Flanagan B, Perepelitsa VP, Wertz GW (1999) Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. J Virol 73: 4705–4712

    Google Scholar 

  • Ball LA, White CN (1976) Order of transcription of genes of vesicular stomatitis virus. Proc Natl Acad Sci USA 73: 442–446

    PubMed  CAS  Google Scholar 

  • Baltimore D, Huang AS, Stampfer M (1970) Ribonucleic acid synthesis of vesicular stomatitis virus, II. An RNA polymerase in the virion. Proc Natl Acad Sci USA 66: 572–576

    Google Scholar 

  • Banerjee AK, Chattopadhyay D (1990) Structure and function of the RNA polymerase of vesicular stomatitis virus. Adv Virus Res 38: 99–124

    PubMed  CAS  Google Scholar 

  • Barik S (1993) The structure of the 5’ terminal cap of the respiratory syncytial virus mRNA. J Gen Virol 74 (Pt 3): 485–490

    PubMed  CAS  Google Scholar 

  • Barr JN, Wertz GW (2001) Polymerase slippage at vesicular stomatitis virus gene junctions to generate poly(A) is regulated by the upstream 3’-AUAC-5’ tetranucleotide: implications for the mechanism of transcription termination. J Virol 75: 6901–6913

    PubMed  CAS  Google Scholar 

  • Barr JN, Whelan SP, Wertz GW (1997a) cis-Acting signals involved in termination of vesicular stomatitis virus mRNA synthesis include the conserved AUAC and the U7 signal for polyadenylation. J Virol 71: 8718–8725

    Google Scholar 

  • Barr JN, Whelan SP, Wertz GW (1997b) Role of the intergenic dinucleotide in vesicular stomatitis virus RNA transcription. J Virol 71: 1794–1801

    PubMed  CAS  Google Scholar 

  • Blumberg BM, Giorgi C, Kolakofsky D (1983) N protein of vesicular stomatitis virus selectively encapsidates leader RNA in vitro. Cell 32: 559–567

    CAS  Google Scholar 

  • Blumberg BM, Kolakofsky D (1981) Intracellular vesicular stomatitis virus leader RNAs are found in nucleocapsid structures. J Virol 40: 568–576

    PubMed  CAS  Google Scholar 

  • Blumberg BM, Leppert M, Kolakofsky D (1981) Interaction of VSV leader RNA and nucleocapsid protein may control VSV genome replication. Cell 23: 837–845

    PubMed  CAS  Google Scholar 

  • Bousse T, Matrosovich T, Portner A, Kato A, Nagai Y, Takimoto T (2002) The long noncoding region of the human parainfluenza virus type 1 f gene contributes to the read-through transcription at the m-f gene junction. J Virol 76: 8244–8251

    PubMed  CAS  Google Scholar 

  • Bousse T, Takimoto T, Murti KG, Portner A (1997) Elevated expression of the human parainfluenza virus type 1 F gene downregulates HN expression. Virology 232: 44–52

    PubMed  CAS  Google Scholar 

  • Bukreyev A, Camargo E, Collins PL (1996) Recovery of infectious respiratory syncytial virus expressing an additional, foreign gene. J Virol 70: 6634–6641

    PubMed  CAS  Google Scholar 

  • Bukreyev A, Murphy BR, Collins PL (2000) Respiratory syncytial virus can tolerate an intergenic sequence of at least 160 nucleotides with little effect on transcription or replication in vitro and in vivo. J Virol 74: 11017–11026

    PubMed  CAS  Google Scholar 

  • Bukreyev A, Whitehead SS, Bukreyeva N, Murphy BR, Collins PL (1999) Interferon gamma expressed by a recombinant respiratory syncytial virus attenuates virus replication in mice without compromising immunogenicity. Proc Natl Acad Sci USA 96: 2367–2372

    PubMed  CAS  Google Scholar 

  • Calain P, Roux L (1993) The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67: 4822–4830

    PubMed  CAS  Google Scholar 

  • Chanda PK, Banerjee AK (198la) Identification of promoter-proximal oligonucleotides and a unique dinucleotide, pppGpC, from in vitro transcription products of vesicular stomatitis virus. J Virol 39: 93–103

    Google Scholar 

  • Chanda PK, Banerjee AK (1981b) Purified vesicular stomatitis virus contains an enzyme activity that synthesizes cytidylyl (5’-3’) guanosine 5’-triphosphate in vitro. J Biol Chem 256: 11393–11396

    PubMed  CAS  Google Scholar 

  • Chuang JL, Perrault J (1997) Initiation of vesicular stomatitis virus mutant po1R1 transcription internally at the N gene in vitro. J Virol 71: 1466–1475

    CAS  Google Scholar 

  • Clarke DK, Sidhu MS, Johnson JE, Udem SA (2000) Rescue of mumps virus from cDNA. J Virol 74: 4831–4838

    PubMed  CAS  Google Scholar 

  • Collins PL, Hightower LE, Ball LA (1980) Transcriptional map for Newcastle disease virus. J Virol 35: 682–693

    PubMed  CAS  Google Scholar 

  • Collins PL, Hill MG, Camargo E, Grosfeld H, Chanock RM, Murphy BR (1995) Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5’ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci USA 92: 11563–11567

    PubMed  CAS  Google Scholar 

  • Collins PL, Mink MA, Stec DS (1991) Rescue of synthetic analogs of respiratory syncytial virus genomic RNA and effect of truncations and mutations on the expression of a foreign reporter gene. Proc Natl Acad Sci USA 88: 9663–9667

    PubMed  CAS  Google Scholar 

  • Collins PL, Olmsted RA, Spriggs MK, Johnson PR, Buckler-White AJ (1987) Gene overlap and site-specific attenuation of transcription of the viral polymerase L gene of human respiratory syncytial virus. Proc Natl Acad Sci USA 84: 5134–5138

    PubMed  CAS  Google Scholar 

  • Collins PL, Wertz GW (1983) cDNA cloning and transcriptional mapping of nine polyadenylylated RNAs encoded by the genome of human respiratory syncytial virus. Proc Natl Acad Sci USA 80: 3208–3212

    Google Scholar 

  • Conzelmann KK (1998) Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Annu Rev Genet 32: 123–162

    PubMed  CAS  Google Scholar 

  • Conzelmann KK, Schnell M (1994) Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins. J Virol 68: 713–719

    PubMed  CAS  Google Scholar 

  • De BP, Banerjee AK (1993) Rescue of synthetic analogs of genome RNA of human parainfluenza virus type 3) Virology 196: 344–348

    PubMed  CAS  Google Scholar 

  • Dickens LE, Collins PL, Wertz GW (1984) Transcriptional mapping of human respiratory syncytial virus. J Virol 52: 364–369

    PubMed  CAS  Google Scholar 

  • Dimock K, Collins PL (1993) Rescue of synthetic analogs of genomic RNA and replicative-intermediate RNA of human parainfluenza virus type 3) J Virol 67: 2772–2778

    PubMed  CAS  Google Scholar 

  • Durbin AP, Siew JW, Murphy BR, Collins PL (1997) Minimum protein requirements for transcription and RNA replication of a minigenome of human parainfluenza virus type 3 and evaluation of the rule of six. Virology 234: 74–83

    PubMed  CAS  Google Scholar 

  • Egelman EH, Wu SS, Amrein M, Portner A, Murti G (1989) The Sendai virus nucleocapsid exists in at least four different helical states. J Virol 63: 2233–2243

    PubMed  CAS  Google Scholar 

  • Eigen M, Biebricher CK (1988) Sequence space and quasispecies distribution. In: Domingo E, Holland J, P. A, eds. RNA genetics. Boca Raton, FL: CRC Press. pp 211–245

    Google Scholar 

  • Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R (1981) The origin of genetic information. Sci Am 244:88–92, 96, et passim

    Google Scholar 

  • Emerson SU (1976) Vesicular stomatitis virus: structure and function of virion components. Curr Top Microbiol Immunol 73: 1–34

    PubMed  CAS  Google Scholar 

  • Emerson SU (1982) Reconstitution studies detect a single polymerase entry site on the vesicular stomatitis virus genome. Cell 31: 635–642

    PubMed  CAS  Google Scholar 

  • Emerson SU, Wagner RR (1972) Dissociation and reconstitution of the transcriptase and template activities of vesicular stomatitis B and T virions. J Virol 10: 297–309

    PubMed  CAS  Google Scholar 

  • Emerson SU, Yu Y (1975) Both NS and L proteins are required for in vitro RNA synthesis by vesicular stomatitis virus. J Virol 15: 1348–1356

    PubMed  CAS  Google Scholar 

  • Fearns R, Collins PL (1999) Model for polymerase access to the overlapped L gene of respiratory syncytial virus. J Virol 73: 388–397

    PubMed  CAS  Google Scholar 

  • Fearns R, Collins PL, Peeples ME (2000) Functional analysis of the genomic and antigenomic promoters of human respiratory syncytial virus. J Virol 74: 6006–6014

    PubMed  CAS  Google Scholar 

  • Fearns R, Peeples ME, Collins PL (2002) Mapping the transcription and replication promoters of respiratory syncytial virus. J Virol 76: 1663–1672

    PubMed  CAS  Google Scholar 

  • Finke S, Conzelmann KK (1997) Ambisense gene expression from recombinant rabies virus: random packaging of positive-and negative-strand ribonucleoprotein complexes into rabies virions. J Virol 71: 7281–7288

    PubMed  CAS  Google Scholar 

  • Finke S, Conzelmann KK (1999) Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3’ copy-back ambisense rabies virus. J Virol 73: 3818–3825

    PubMed  CAS  Google Scholar 

  • Finke S, Cox JH, Conzelmann KK (2000) Differential transcription attenuation of rabies virus genes by intergenic regions: generation of recombinant viruses overexpressing the polymerase gene. J Virol 74: 7261–7269

    PubMed  CAS  Google Scholar 

  • Flamand A, Delagneau JF (1978) Transcriptional mapping of rabies virus in vivo. J Virol 28: 518–523

    PubMed  CAS  Google Scholar 

  • Flanagan EB, Ball LA, Wertz GW (2000) Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response. J Virol 74: 7895–7902

    PubMed  CAS  Google Scholar 

  • Flanagan EB, Zamparo JM, Ball LA, Rodriguez LL, Wertz GW (2001) Rearrangement of the genes of vesicular stomatitis virus eliminates clinical disease in the natural host: new strategy for vaccine development. J Virol 75: 6107–6114

    PubMed  CAS  Google Scholar 

  • Garcin D, Pelet T, Calain P, Roux L, Curran J, Kolakofsky D (1995) A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J 14: 6087–6094

    PubMed  CAS  Google Scholar 

  • Glazier K, Raghow R, Kingsbury DW (1977) Regulation of Sendai virus transcription: evidence for a single promoter in vivo. J Virol 21: 863–871

    PubMed  CAS  Google Scholar 

  • Gupta KC, Roy P (1980) Alternate capping mechanisms for transcription of Spring Viremia of Carp Virus: Evidence for independent mRNA initiation. J Virol 33: 292–303

    Google Scholar 

  • Hardy RW, Harmon SB, Wertz GW (1999) Diverse gene junctions of respiratory syncytial virus modulate the efficiency of transcription termination and respond differently to M2-mediated antitermination. J Virol 73: 170–176

    PubMed  CAS  Google Scholar 

  • Harmon SB, Megaw AG, Wertz GW (2001) RNA sequences involved in transcriptional termination of respiratory syncytial virus. J Virol 75: 36–44

    PubMed  CAS  Google Scholar 

  • Harmon SB, Wertz GW (2002) Transcriptional termination modulated by nucleotides outside the characterized gene end sequence of respiratory syncytial virus. Virology 300: 304–315

    PubMed  CAS  Google Scholar 

  • Hasan MK, Kato A, Shioda T, Sakai Y, Yu D, Nagai Y (1997) Creation of an infectious recombinant Sendai virus expressing the firefly luciferase gene from the 3’ proximal first locus. J Gen Virol 78 (Pt 11): 2813–2820

    PubMed  CAS  Google Scholar 

  • Hausmann S, Garcin D, Delenda C, Kolakofsky D (1999a) The versatility of para-myxovirus RNA polymerase stuttering. J Virol 73: 5568–5576

    PubMed  CAS  Google Scholar 

  • Hausmann S, Garcin D, Morel AS, Kolakofsky D (1999b) Two nucleotides immediately upstream of the essential A6G3 slippery sequence modulate the pattern of G insertions during Sendai virus mRNA editing. J Virol 73: 343–351

    PubMed  CAS  Google Scholar 

  • He B, Paterson RG, Ward CD, Lamb RA (1997) Recovery of infectious SV5 from cloned DNA and expression of a foreign gene. Virology 237: 249–260

    PubMed  CAS  Google Scholar 

  • Hercyk N, Horikami SM, Moyer SA (1988) The vesicular stomatitis virus L protein possesses the mRNA methyltransferase activities. Virology 163: 222–225

    PubMed  CAS  Google Scholar 

  • Hinzman EE, Barr JN, Wertz GW (2002) Identification of an upstream sequence element required for vesicular stomatitis virus mRNA transcription. J Virol 76: 7632–7641

    PubMed  CAS  Google Scholar 

  • Howard M, Wertz G (1989) Vesicular stomatitis virus RNA replication: a role for the NS protein. J Gen Virol 70 (Pt 10): 2683–2694

    PubMed  CAS  Google Scholar 

  • Hunt DM, Emerson SU, Wagner RR (1976) RNA-temperature-sensitive mutants of vesicular stomatitis virus: L-protein thermosensitivity accounts for transcriptase restriction of group I mutants. J Virol 18: 596–603

    Google Scholar 

  • Hwang LN, Englund N, Pattnaik AK (1998) Polyadenylation of vesicular stomatitis virus mRNA dictates efficient transcription termination at the intercistronic gene junctions. J Virol 72: 1805–1813

    PubMed  CAS  Google Scholar 

  • Iseni F, Baudin F, Garcin D, Marq JB, Ruigrok RW, Kolakofsky D (2002) Chemical modification of nucleotide bases and mRNA editing depend on hexamer or nucleoprotein phase in Sendai virus nucleocapsids. Rna 8: 1056–1067

    PubMed  CAS  Google Scholar 

  • Iverson LE, Rose JK (1981) Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell 23: 477–484

    PubMed  CAS  Google Scholar 

  • Kato A, Kiyotani K, Hasan MK, Shioda T, Sakai Y, Yoshida T, Nagai Y (1999) Sendai virus gene start signals are not equivalent in reinitiation capacity: moderation at the fusion protein gene. J Virol 73: 9237–9246

    PubMed  CAS  Google Scholar 

  • Keene JD, Lazzarini RA (1976) A comparison of the extents of methylation of vesicular stomatitis virus messenger RNA. Virology 69: 364–367

    PubMed  CAS  Google Scholar 

  • Keene JD, Thornton BJ, Emerson SU (1981) Sequence-specific contacts between the RNA polymerase of vesicular stomatitis virus and the leader RNA gene. Proc Natl Acad Sci USA 78: 6191–6195

    PubMed  CAS  Google Scholar 

  • Keller MA, Murphy SK, Parks GD (2001) RNA replication from the simian virus 5 antigenomic promoter requires three sequence-dependent elements separated by sequence-independent spacer regions. J Virol 75: 3993–3998

    PubMed  CAS  Google Scholar 

  • Kiley MP, Wagner RR (1972) Ribonucleic acid species of intracellular nucleocapsids and released virions of vesicular stomatitis virus. J Virol 10: 244–255

    PubMed  CAS  Google Scholar 

  • Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L (1998) Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72: 891–899

    PubMed  CAS  Google Scholar 

  • Krishnamurthy S, Huang Z, Samal SK (2000) Recovery of a virulent strain of newcastle disease virus from cloned cDNA: expression of a foreign gene results in growth retardation and attenuation. Virology 278: 168–182

    PubMed  CAS  Google Scholar 

  • Kuo L, Fearns R, Collins PL (1996a) The structurally diverse intergenic regions of respiratory syncytial virus do not modulate sequential transcription by a dicistronic minigenome. J Virol 70: 6143–6150

    PubMed  CAS  Google Scholar 

  • Kuo L, Fearns R, Collins PL (1997) Analysis of the gene start and gene end signals of human respiratory syncytial virus: quasi-templated initiation at position 1 of the encoded mRNA. J Virol 71: 4944–4953

    PubMed  CAS  Google Scholar 

  • Kuo L, Grosfeld H, Cristina J, Hill MG, Collins PL (1996b) Effects of mutations in the gene-start and gene-end sequence motifs on transcription of monocistronic and dicistronic minigenomes of respiratory syncytial virus. J Virol 70: 6892–6901

    PubMed  CAS  Google Scholar 

  • Lamb RA, Kolakofsky D (2001) Paramyxoviridae: The viruses and their replication. In: Knipe D, Howley PM, eds. Fields Virology: Lippincott Williams and Wilkins. pp 1305–1340

    Google Scholar 

  • Lawson ND, Stillman EA, Whitt MA, Rose JK (1995) Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci USA 92: 4477–4481

    PubMed  CAS  Google Scholar 

  • Li T, Pattnaik AK (1997) Replication signals in the genome of vesicular stomatitis virus and its defective interfering particles: identification of a sequence element that enhances DI RNA replication. Virology 232: 248–259

    PubMed  CAS  Google Scholar 

  • Li T, Pattnaik AK (1999) Overlapping signals for transcription and replication at the 3’ terminus of the vesicular stomatitis virus genome. J Virol 73: 444–452

    PubMed  CAS  Google Scholar 

  • Marriott AC, Smith JM, Easton AJ (2001) Fidelity of leader and trailer sequence usage by the respiratory syncytial virus and avian pneumovirus replication complexes. J Virol 75: 6265–6272

    PubMed  CAS  Google Scholar 

  • Mebatsion T, Schnell MJ, Cox JH, Finke S, Conzelmann KK (1996) Highly stable expression of a foreign gene from rabies virus vectors. Proc Natl Acad Sci USA 93: 7310–7314

    PubMed  CAS  Google Scholar 

  • Moyer SA, Abraham G, Adler R, Banerjee AK (1975) Methylated and blocked 5“ termini in vesicular stomatitis virus in vivo mRNAs. Cell 5: 59–67

    PubMed  CAS  Google Scholar 

  • Moyer SA, Banerjee AK (1976) In vivo methylation of vesicular stomatitis virus and its host-cell messenger RNA species. Virology 70: 339–351

    PubMed  CAS  Google Scholar 

  • Murphy SK, Ito Y, Parks GD (1998) A functional antigenomic promoter for the para-myxovirus simian virus 5 requires proper spacing between an essential internal segment and the 3’ terminus. J Virol 72: 10–19

    PubMed  CAS  Google Scholar 

  • Murphy SK, Parks GD (1997) Genome nucleotide lengths that are divisible by six are not essential but enhance replication of defective interfering RNAs of the para-myxovirus simian virus 5) Virology 232: 145–157

    PubMed  CAS  Google Scholar 

  • Murphy SK, Parks GD (1999) RNA replication for the paramyxovirus simian virus 5 requires an internal repeated ( CGNNNN) sequence motif. J Virol 73: 805–809

    Google Scholar 

  • Park KH, Huang T, Correia FF, Krystal M (1991) Rescue of a foreign gene by Sendai virus. Proc Nail Acad Sci USA 88: 5537–5541

    CAS  Google Scholar 

  • Park KH, Krystal M (1992) In vivo model for pseudo-templated transcription in Sendai virus. J Virol 66: 7033–7039

    PubMed  CAS  Google Scholar 

  • Parks GD, Ward KR, Rassa JC (2001) Increased readthrough transcription across the simian virus 5 M-F gene junction leads to growth defects and a global inhibition of viral mRNA synthesis. J Virol 75: 2213–2223

    PubMed  CAS  Google Scholar 

  • Pattnaik AK, Ball LA, LeGrone AW, Wertz GW (1992) Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell 69: 1011–1020

    PubMed  CAS  Google Scholar 

  • Pattnaik AK, Hwang L, Li T, Englund N, Mathur M, Das T, Banerjee AK (1997) Phosphorylation within the amino-terminal acidic domain I of the phosphoprotein of vesicular stomatitis virus is required for transcription but not for replication. J Virol 71: 8167–8175

    PubMed  CAS  Google Scholar 

  • Patton JT, Davis NL, Wertz GW (1984) N protein alone satisfies the requirement for protein synthesis during RNA replication of vesicular stomatitis virus. J Virol 49: 303–309

    CAS  Google Scholar 

  • Peeples ME, Collins PL (2000) Mutations in the 5’ trailer region of a respiratory syncytial virus minigenome which limit RNA replication to one step. J Virol 74: 146–155

    PubMed  CAS  Google Scholar 

  • Peeters BP, Gruijthuijsen YK, de Leeuw OS, Gielkens AL (2000) Genome replication of Newcastle disease virus: involvement of the rule-of-six. Arch Virol 145: 1829–1845

    PubMed  CAS  Google Scholar 

  • Pelet T, Delenda C, Gubbay O, Garcin D, Kolakofsky D (1996) Partial characterization of a Sendai virus replication promoter and the rule of six. Virology 224: 405–414

    PubMed  CAS  Google Scholar 

  • Peluso RW, Moyer SA (1988) Viral proteins required for the in vitro replication of vesicular stomatitis virus defective interfering particle genome RNA. Virology 162: 369–376

    PubMed  CAS  Google Scholar 

  • Pennica D, Lynch KR, Cohen PS, Ennis HL (1979) Decay of vesicular stomatitis virus mRNAs in vivo. Virology 94: 484–487

    PubMed  CAS  Google Scholar 

  • Perlman SM, Huang AS (1973) RNA synthesis of vesicular stomatitis virus. V. Interactions between transcription and replication. J Virol 12: 1395–1400

    Google Scholar 

  • Perrault J, Clinton GM, McClure MA (1983) RNP template of vesicular stomatitis virus regulates transcription and replication functions. Cell 35: 175–185

    PubMed  CAS  Google Scholar 

  • Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dotsch C, Christiansen G, Billeter MA (1995) Rescue of measles viruses from cloned DNA. EMBO J 14: 5773–5784

    PubMed  CAS  Google Scholar 

  • Rassa JC, Parks GD (1998) Molecular basis for naturally occurring elevated read-through transcription across the M-F junction of the paramyxovirus SV5) Virology 247: 274–286

    CAS  Google Scholar 

  • Rassa JC, Parks GD (1999) Highly diverse intergenic regions of the paramyxovirus simian virus 5 cooperate with the gene end U tract in viral transcription termination and can influence reinitiation at a downstream gene. J Virol 73: 3904–3912

    PubMed  CAS  Google Scholar 

  • Rhodes DP, Banerjee AK (1975) 5’-Terminal sequence of vesicular stomatitis virus mRNA’s synthesized in vitro. J Virol 17: 33–42

    Google Scholar 

  • Rhodes DP, Moyer SA, Banerjee AK (1974) In vitro synthesis of methylated messenger RNA by the virion-associated RNA polymerase of vesicular stomatitis virus. Cell 3: 327–333

    PubMed  CAS  Google Scholar 

  • Rose JK (1975) Heterogeneous 5’-terminal structures occur on vesicular stomatitis virus mRNAs. J Biol Chem 250: 8098–8104

    PubMed  CAS  Google Scholar 

  • Rose JK, Lodish HF, Brock ML (1977) Giant heterogeneous polyadenylic acid on vesicular stomatitis virus mRNA synthesized in vitro in the presence of S-adenosylhomocysteine. J Virol 21: 683–693

    PubMed  CAS  Google Scholar 

  • Samal SK, Collins PL (1996) RNA replication by a respiratory syncytial virus RNA analog does not obey the rule of six and retains a nonviral trinucleotide extension at the leader end. J Virol 70: 5075–5082

    PubMed  CAS  Google Scholar 

  • Schincariol AL, Howatson AF (1972) Replication of vesicular stomatitis virus. II. Separation and characterization of virus-specific RNA species. Virology 49: 766–783

    Google Scholar 

  • Schlender J, Bossert B, Buchholz U, Conzelmann KK (2000) Bovine respiratory syncytial virus nonstructural proteins NS1 and NS2 cooperatively antagonize alpha/ beta interferon-induced antiviral response. J Virol 74: 8234–8242

    PubMed  CAS  Google Scholar 

  • Schnell MJ, Buonocore L, Whitt MA, Rose JK (1996) The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J Virol 70: 2318–2323

    PubMed  CAS  Google Scholar 

  • Schnell MJ, Mebatsion T, Conzelmann KK (1994) Infectious rabies viruses from cloned cDNA. EMBO J 13: 4195–4203

    PubMed  CAS  Google Scholar 

  • Schubert M, Lazzarini RA (1981) In vivo transcription of the 5’-terminal extracistronic region of vesicular stomatitis virus RNA. J Virol 38: 256–262

    PubMed  CAS  Google Scholar 

  • Sidhu MS, Chan J, Kaelin K, Spielhofer P, Radecke F, Schneider H, Masurekar M, Dowling PC, Billeter MA, Udem SA (1995) Rescue of synthetic measles virus minireplicons: measles genomic termini direct efficient expression and propagation of a reporter gene. Virology 208: 800–807

    PubMed  CAS  Google Scholar 

  • Simonsen CC, Batt-Humphries S, Summers DF (1979) RNA synthesis of vesicular stomatitis virus-infected cells: in vivo regulation of replication. J Virol 31: 124–132

    PubMed  CAS  Google Scholar 

  • Singh M, Cattaneo R, Billeter MA (1999) A recombinant measles virus expressing hepatitis B virus surface antigen induces humoral immune responses in genetically modified mice. J Virol 73: 4823–4828

    PubMed  CAS  Google Scholar 

  • Skiadopoulos MH, Surman SR, Riggs JM, Orvell C, Collins PL, Murphy BR (2002) Evaluation of the replication and immunogenicity of recombinant human parainfluenza virus type 3 vectors expressing up to three foreign glycoproteins. Virology 297: 136–152

    PubMed  CAS  Google Scholar 

  • Skiadopoulos MH, Vogel L, Riggs JM, Surman SR, Collins PL, Murphy BR (2003) The genome length of human parainfluenza virus type 2 follows the rule of six, and recombinant viruses recovered from non-polyhexameric-length antigenomic cDNAs contain a biased distribution of correcting mutations. J Virol 77: 270–279

    PubMed  CAS  Google Scholar 

  • Smallwood S, Moyer SA (1993) Promoter analysis of the vesicular stomatitis virus RNA polymerase. Virology 192: 254–263

    PubMed  CAS  Google Scholar 

  • Soria M, Little SP, Huang AS (1974) Characterization of vesicular stomatitis virus nucleocapsids. I. Complementary 40 S RNA molecules in nucleocapsids. Virology 61: 270–280

    PubMed  CAS  Google Scholar 

  • Spielhofer P, Bachi T, Fehr T, Christiansen G, Cattaneo R, Kaelin K, Billeter MA, Naim HY (1998) Chimeric measles viruses with a foreign envelope. J Virol 72: 2150–2159

    PubMed  CAS  Google Scholar 

  • Steinhauer DA, de la Torre JC, Holland JJ (1989) High nucleotide substitution error frequencies in clonal pools of vesicular stomatitis virus. J Virol 63: 2063–2071

    PubMed  CAS  Google Scholar 

  • Steinhauer DA, Domingo E, Holland JJ (1992) Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 122: 281–288

    PubMed  CAS  Google Scholar 

  • Steinhauer DA, Holland JJ (1986) Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. J Virol 57: 219–228

    PubMed  CAS  Google Scholar 

  • Stillman EA, Whitt MA (1997) Mutational analyses of the intergenic dinucleotide and the transcriptional start sequence of vesicular stomatitis virus ( VSV) define sequences required for efficient termination and initiation of VSV transcripts. J Virol 71: 2127–2137

    Google Scholar 

  • Stillman EA, Whitt MA (1998) The length and sequence composition of vesicular stomatitis virus intergenic regions affect mRNA levels and the site of transcript initiation. J Virol 72: 5565–5572

    PubMed  CAS  Google Scholar 

  • Stillman EA, Whitt MA (1999) Transcript initiation and 5’-end modifications are separable events during vesicular stomatitis virus transcription. J Virol 73: 7199–7209

    PubMed  CAS  Google Scholar 

  • Sutherland KA, Collins PL, Peeples ME (2001) Synergistic effects of gene-end signal mutations and the M2–1 protein on transcription termination by respiratory syncytial virus. Virology 288: 295–307

    PubMed  CAS  Google Scholar 

  • Szilagyi JF, Uryvayev L (1973) Isolation of an infectious ribonucleoprotein from vesicular stomatitis virus containing an active RNA transcriptase. J Virol 11: 279–286

    PubMed  CAS  Google Scholar 

  • Tapparel C, Maurice D, Roux L (1998) The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif (GNNNNN)3 is essential for replication. J Virol 72: 3117–3128

    PubMed  CAS  Google Scholar 

  • Testa D, Banerjee AK (1977) Two methyltransferase activities in the purified virions of vesicular stomatitis virus. J Virol 24: 786–793

    PubMed  CAS  Google Scholar 

  • Thomas SM, Lamb RA, Paterson RG (1988) Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the para-myxovirus SV5) Cell 54: 891–902

    CAS  Google Scholar 

  • Tidona CA, Kurz HW, Gelderblom HR, Darai G (1999) Isolation and molecular characterization of a novel cytopathogenic paramyxovirus from tree shrews. Virology 258: 425–434

    PubMed  CAS  Google Scholar 

  • Tokusumi T, Iida A, Hirata T, Kato A, Nagai Y, Hasegawa M (2002) Recombinant Sendai viruses expressing different levels of a foreign reporter gene. Virus Res 86: 33–38

    PubMed  CAS  Google Scholar 

  • Tsurudome M, Bando H, Kawano M, Matsumura H, Komada H, Nishio M, Ito Y (1991) Transcripts of simian virus 41 (SV41) matrix gene are exclusively dicistronic with the fusion gene which is also transcribed as a monocistron. Virology 184: 93–100

    PubMed  CAS  Google Scholar 

  • Villarreal LP, Breindl M, Holland JJ (1976) Determination of molar ratios of vesicular stomatitis virus induced RNA species in BHK21 cells. Biochemistry 15: 1663–1667

    PubMed  CAS  Google Scholar 

  • Walsh EP, Baron MD, Anderson J, Barrett T (2000) Development of a genetically marked recombinant rinderpest vaccine expressing green fluorescent protein. J Gen Virol 81: 709–718

    PubMed  CAS  Google Scholar 

  • Wang LF, Yu M, Hansson E, Pritchard LI, Shiell B, Michalski WP, Eaton BT (2000) The exceptionally large genome of Hendra virus: support for creation of a new genus within the family Paramyxoviridae. J Virol 74: 9972–9979

    PubMed  CAS  Google Scholar 

  • Wertz GW (1978) Isolation of possible replicative intermediate structures from vesicular stomatitis virus-infected cells. Virology 85: 271–285

    PubMed  CAS  Google Scholar 

  • Wertz GW, Moudy R, Ball LA (2002) Adding genes to the RNA genome of vesicular stomatitis virus: positional effects on stability of expression. J Virol 76: 7642–7650

    PubMed  CAS  Google Scholar 

  • Wertz GW, Perepelitsa VP, Ball LA (1998) Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus. Proc Natl Acad Sci USA 95: 3501–3506

    PubMed  CAS  Google Scholar 

  • Wertz GW, Whelan S, LeGrone A, Ball LA (1994) Extent of terminal complementarity modulates the balance between transcription and replication of vesicular stomatitis virus RNA. Proc Natl Acad Sci USA 91: 8587–8591

    PubMed  CAS  Google Scholar 

  • Whelan SP, Ball LA, Barr JN, Wertz GT (1995) Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci USA 92: 8388–8392

    PubMed  CAS  Google Scholar 

  • Whelan SP, Barr JN, Wertz GW (2000) Identification of a minimal size requirement for termination of vesicular stomatitis virus mRNA: implications for the mechanism of transcription. J Virol 74: 8268–8276

    PubMed  CAS  Google Scholar 

  • Whelan SP, Wertz GW (1999a) The 5’ terminal trailer region of vesicular stomatitis virus contains a position-dependent cis-acting signal for assembly of RNA into infectious particles. J Virol 73: 307–315

    PubMed  CAS  Google Scholar 

  • Whelan SP, Wertz GW (1999b) Regulation of RNA synthesis by the genomic termini of vesicular stomatitis virus: identification of distinct sequences essential for transcription but not replication. J Virol 73: 297–306

    PubMed  CAS  Google Scholar 

  • Whelan SP, Wertz GW (2002) Transcription and replication initiate at separate sites on the vesicular stomatitis virus genome. Proc Natl Acad Sci USA 99: 9178–9183

    PubMed  CAS  Google Scholar 

  • Yu Q, Hardy RW, Wertz GW (1995) Functional cDNA clones of the human respiratory syncytial ( RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. J Virol 69: 2412–2419

    Google Scholar 

  • Yunus AS, Krishnamurthy S, Pastey MK, Huang Z, Khattar SK, Collins PL, Samal SK (1999) Rescue of a bovine respiratory syncytial virus genomic RNA analog by bovine, human and ovine respiratory syncytial viruses confirms the “functional integrity” and “cross-recognition” of BRSV cis-acting elements by HRSV and ORSV. Arch Virol 144: 1977–1990

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whelan, S.P.J., Barr, J.N., Wertz, G.W. (2004). Transcription and Replication of Nonsegmented Negative-Strand RNA Viruses. In: Kawaoka, Y. (eds) Biology of Negative Strand RNA Viruses: The Power of Reverse Genetics. Current Topics in Microbiology and Immunology, vol 283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06099-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06099-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07375-5

  • Online ISBN: 978-3-662-06099-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics