Reverse Genetics Systems for the Generation of Segmented Negative-Sense RNA Viruses Entirely from Cloned cDNA

  • G. Neumann
  • Y. Kawaoka
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 283)


Reverse genetics is defined as the generation of virus entirely from cloned cDNA. For negative-sense RNA viruses, whose genomes are complementary to mRNA in their orientation, the viral RNA(s) and the viral proteins required for replication and translation must be provided to initiate the viral replication cycle. Segmented negative-sense RNA viruses were refractory to genetic manipulation until 1989. In this chapter, we review developments in the reverse genetics of segmented negative-sense RNA viruses, beginning with the in vitro reconstitution of viral polymerase complexes in the late 1980s and culminating in the generation of Bunyamwera and influenza virus entirely from plasmid DNA almost a decade later.


Influenza Virus Newcastle Disease Virus Reverse Genetic System Protein Expression Plasmid Viral Gene Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barclay WS, Palese P (1995) Influenza B viruses with site-specific mutations introduced into the HA gene. J Virol 69: 1275–1279PubMedGoogle Scholar
  2. Baron MD, Barrett T (1997) Rescue of rinderpest virus from cloned cDNA. J Virol 71: 1265–1271PubMedGoogle Scholar
  3. Beaton AR, Krug RM (1986) Transcription antitermination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5’ capped end. Proc Natl Acad Sci USA 83: 6282–6286PubMedCrossRefGoogle Scholar
  4. Boyer JC, Haenni AL (1994) Infectious transcripts and cDNA clones of RNA viruses. Virology 198: 415–426PubMedCrossRefGoogle Scholar
  5. Bridgen A, Elliott RM (1996) Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci USA 93: 15400–15404PubMedCrossRefGoogle Scholar
  6. Bridgen A, Weber F, Fazakerley JK, Elliott RM (2001) Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. Proc Natl Acad Sci USA 98: 664–669PubMedCrossRefGoogle Scholar
  7. Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73: 251–259PubMedGoogle Scholar
  8. Castrucci MR, Kawaoka Y (1995) Reverse genetics system for generation of an influenza A virus mutant containing a deletion of the carboxyl-terminal residue of M2 protein. J Virol 69: 2725–2758PubMedGoogle Scholar
  9. Clarke DK, Sidhu MS, Johnson JE, Udem SA (2000) Rescue of mumps virus from cDNA. J Virol 74: 4831–4838PubMedCrossRefGoogle Scholar
  10. Collins PL, Hill MG, Camargo E, Grosfeld H, Chanock RM, Murphy BR (1995) Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5’ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci USA 92: 11563–11567PubMedCrossRefGoogle Scholar
  11. de la Luna S, Martin J, Portela A, Ortin J (1993) Influenza virus naked RNA can be expressed upon transfection into cells co-expressing the three subunits of the polymerase and the nucleoprotein from simian virus 40 recombinant viruses. J Gen Virol 74: 535–539PubMedCrossRefGoogle Scholar
  12. Durbin AP, Hall SL, Siew JW, Whitehead SS, Collins PL, Murphy BR (1997) Recovery of infectious human parainfluenza virus type 3 from cDNA. Virology 235: 323–332PubMedCrossRefGoogle Scholar
  13. Enami M, Luytjes W, Krystal M, Palese P (1990) Introduction of site-specific mutations into the genome of influenza virus. Proc Natl Acad Sci USA 87: 3802–3805PubMedCrossRefGoogle Scholar
  14. Enami M, Palese P (1991) High-efficiency formation of influenza virus transfectants. J Virol 65: 2711–2713PubMedGoogle Scholar
  15. Enami M, Sharma G, Benham C, Palese P (1991) An influenza virus containing nine different RNA segments. Virology 185: 291–298PubMedCrossRefGoogle Scholar
  16. Enami M, Enami K (2000) Characterization of influenza virus NS1 protein by using a novel helper-virus-free reverse genetic system. J Virol 74: 5556–5561PubMedCrossRefGoogle Scholar
  17. Flick R, Pettersson RF (2001) Reverse genetics system for Uukuniemi virus ( Bunyaviridae ): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol 75: 1643–1655Google Scholar
  18. Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A (1999) Rescue of influenza A virus from recombinant DNA. J Virol 73: 9679–9682PubMedGoogle Scholar
  19. Garcin D, Pelet T, Calain P, Roux L, Curran J, Kolakofsky D (1995) A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J 14: 6087–6094PubMedGoogle Scholar
  20. Gassen U, Collins FM, Duprex WP, Rima BK (2000) Establishment of a rescue system for canine distemper virus. J Virol 74: 10737–10744PubMedCrossRefGoogle Scholar
  21. Gomez-Puertas P, Mena I, Castillo M, Vivo A, Perez-Pastrana E, Portela A (1999) Efficient formation of influenza virus-like particles: dependence on the expression levels of viral proteins. J Gen Virol 80: 1635–1645PubMedGoogle Scholar
  22. Gomez-Puertas P, Leahy MB, Nuttall PA, Portela A (2000) Rescue of synthetic RNAs into thogoto and influenza A virus particles using core proteins purified from Thogoto virus. Virus Res 67: 41–48PubMedCrossRefGoogle Scholar
  23. Haller AA, Miller T, Mitiku M, Coelingh K (2000) Expression of the surface glycoproteins of human parainfluenza virus type 3 by bovine parainfluenza virus type 3, a novel attenuated virus vaccine vector. J Virol 74: 11626–11635PubMedCrossRefGoogle Scholar
  24. Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293: 1840–1842PubMedCrossRefGoogle Scholar
  25. Hatta M, Halfmann P, Wells K, Kawaoka Y (2002) Human influenza A viral genes responsible for the restriction of its replication in duck intestine. Virology 295: 250–255PubMedCrossRefGoogle Scholar
  26. He B, Paterson RG, Ward CD, Lamb RA (1997) Recovery of infectious SV5 from cloned DNA and expression of a foreign gene. Virology 237: 249–260PubMedCrossRefGoogle Scholar
  27. Hoffman MA, Banerjee AK (1997) An infectious clone of human parainfluenza virus type 3. J Virol 71: 4272–4277PubMedGoogle Scholar
  28. Hoffmann E, Neumann G, Hobom G, Webster RG, Kawaoka, Y (2000a) “Ambisense” approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology 267: 310–317Google Scholar
  29. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000b) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA 97: 6108–6113PubMedCrossRefGoogle Scholar
  30. Hoffmann E, Webster RG (2000) Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids. J Gen Virol 81: 2843–2847PubMedGoogle Scholar
  31. Honda A, Ueda K, Nagata K, Ishihama A (1987) Identification of the RNA polymerase-binding site on genome RNA of influenza virus. J Biochem (Tokyo) 102: 1241–1249Google Scholar
  32. Honda A, Ueda K, Nagata K, Ishihama A (1988) RNA polymerase of influenza virus: role of NP in RNA chain elongation. J Biochem (Tokyo) 104: 1021–1026Google Scholar
  33. Honda A, Mukaigawa J, Yokoiyama A, Kato A, Ueda S, Nagata K, Krystal M, Nayak DP, Ishihama A (1990) Purification and molecular structure of RNA polymerase from influenza virus A/PR8. J Biochem (Tokyo) 107: 624–628Google Scholar
  34. Horimoto T, Kawaoka Y (1994) Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol 68: 3120–3128PubMedGoogle Scholar
  35. Huang TS, Palese P, Krystal M (1990) Determination of influenza virus proteins required for genome replication. J Virol 64: 5669–5673PubMedGoogle Scholar
  36. Kato A, Sakai Y, Shioda T, Kondo T, Nakanishi M, Nagai Y (1996) Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes Cells 1: 569–79PubMedCrossRefGoogle Scholar
  37. Kawano M, Kaito M, Kozuka Y, Komada H, Noda N, Nanba K, Tsurudome M, Ito M, Nishio M, Ito Y (2001) Recovery of infectious human parainfluenza type 2 virus from cDNA clones and properties of the defective virus without V-specific cysteine-rich domain. Virology 284: 99–112PubMedCrossRefGoogle Scholar
  38. Kim HJ, Fodor E, Brownlee GG, Seong BL (1997) Mutational analysis of the RNA-fork model of the influenza A virus vRNA promoter in vivo. J Gen Virol 78: 353–357PubMedGoogle Scholar
  39. Kimura N, Nishida M, Nagata K, Ishihama A, Oda K, Nakada S (1992) Transcription of a recombinant influenza virus RNA in cells that can express the influenza virus RNA polymerase and nucleoprotein genes. J Gen Virol 73: 1321–1328PubMedCrossRefGoogle Scholar
  40. Krishnamurthy S, Huang Z, Samal SK (2000) Recovery of a virulent strain of newcastle disease virus from cloned cDNA: expression of a foreign gene results in growth retardation and attenuation. Virology 278: 168–182PubMedCrossRefGoogle Scholar
  41. Lawson ND, Stillman EA, Whitt MA, Rose JK (1995) Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci USA 92: 4477–4481PubMedCrossRefGoogle Scholar
  42. Lee KJ, Novella IS, Teng MN, Oldstone MB, de La Torre JC (2000) NP and L proteins of lymphocytic choriomeningitis virus ( LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 74: 3470–3477Google Scholar
  43. Li S, Xu M, Coelingh K (1995) Electroporation of influenza virus ribonucleoprotein complexes for rescue of the nucleoprotein and matrix genes. Virus Res 37: 153–161PubMedCrossRefGoogle Scholar
  44. Luytjes W, Krystal M, Enami M, Parvin JD, Palese P (1989) Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59: 1107–1113PubMedCrossRefGoogle Scholar
  45. Mena I, de la Luna S, Albo C, Martin J, Nieto A, Ortin J, Portela A (1994) Synthesis of biologically active influenza virus core proteins using a vaccinia virus-T7 RNA polymerase expression system. J Gen Virol 75: 2109–2114PubMedCrossRefGoogle Scholar
  46. Mena I, Vivo A, Perez E, Portela A (1996) Rescue of a synthetic chloramphenicol acetyltransferase RNA into influenza virus-like particles obtained from recombinant plasmids. J Virol 70: 5016–5024PubMedGoogle Scholar
  47. Neumann G, Zobel A, Hobom G (1994) RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology 202: 477–479PubMedCrossRefGoogle Scholar
  48. Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA 96: 9345–50PubMedCrossRefGoogle Scholar
  49. Neumann G, Hughes MT, Kawaoka Y (2000a) Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J 19: 6751–6758PubMedCrossRefGoogle Scholar
  50. Neumann G, Watanabe T, Kawaoka Y (2000b) Plasmid-driven formation of influenza virus-like particles. J Virol 74: 547–51PubMedCrossRefGoogle Scholar
  51. Neumann G, Feldmann H, Watanabe S, Lukashevich I, Kawaoka Y (2002) Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol 76: 406–410PubMedCrossRefGoogle Scholar
  52. O’Neill RE, Talon J, Palese P (1998) The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J 17: 288–296PubMedCrossRefGoogle Scholar
  53. Parvin JD, Palese P, Honda A, Ishihama A, Krystal M (1989) Promoter analysis of influenza virus RNA polymerase. J Virol 63: 5142–5152PubMedGoogle Scholar
  54. Paule RME (1998) Transcription of Ribosomal RNA Genes by Eukaryotic RNA Polymerase I. Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  55. Peeters BP, de Leeuw OS, Koch G, Gielkens AL (1999) Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 73: 5001–5009PubMedGoogle Scholar
  56. Pleschka S, Jaskunas R, Engelhardt OG, Zurcher T, Palese P, Garcia-Sastre A (1996) A plasmid-based reverse genetics system for influenza A virus. J Virol 70: 4188–4192PubMedGoogle Scholar
  57. Plotch SJ, Bouloy M, Ulmanen I, Krug RM (1981) A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23: 847–858PubMedCrossRefGoogle Scholar
  58. Racaniello VR, Baltimore D (1981) Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214: 916–919PubMedCrossRefGoogle Scholar
  59. Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dotsch C, Christiansen G, Billeter MA (1995) Rescue of measles viruses from cloned DNA. EMBO J 14: 5773–5784PubMedGoogle Scholar
  60. Romer-Oberdorfer A, Mundt E, Mebatsion T, Buchholz UJ, Mettenleiter TC (1999) Generation of recombinant lentogenic Newcastle disease virus from cDNA. J Gen Virol 80: 2987–2995PubMedGoogle Scholar
  61. Rowley KV, Harvey R, Barclay WS (1999) Isolation and characterization of a trans- fectant influenza B virus altered in RNA segment 6. J Gen Virol 80: 2353–2359PubMedGoogle Scholar
  62. Schneider H, Spielhofer P, Kaelin K, Dotsch C, Radecke F, Sutter G, Billeter MA (1997) Rescue of measles virus using a replication-deficient vaccinia-T7 vector. J Virol Methods 64: 57–64PubMedCrossRefGoogle Scholar
  63. Schnell MJ, Mebatsion T, Conzelmann KK (1994) Infectious rabies viruses from cloned cDNA. EMBO J 13: 4195–4203PubMedGoogle Scholar
  64. Seong BL, Brownlee GG (1992) A new method for reconstituting influenza polymerase and RNA in vitro: a study of the promoter elements for cRNA and vRNA synthesis in vitro and viral rescue in vivo. Virology 186: 247–260PubMedCrossRefGoogle Scholar
  65. Seong BL, Kobayashi M, Nagata K, Brownlee GG, Ishihama A (1992) Comparison of two reconstituted systems for in vitro transcription and replication of influenza virus. J Biochem 111: 496–499PubMedGoogle Scholar
  66. Subbarao EK, Kawaoka Y, Murphy BR (1993) Rescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutation. J Virol 67: 7223–7228PubMedGoogle Scholar
  67. Takeda M, Takeuchi K, Miyajima N, Kobune F, Ami Y, Nagata N, Suzaki Y, Nagai Y, Tashiro M (2000) Recovery of pathogenic measles virus from cloned cDNA. J Virol 74: 6643–6647PubMedCrossRefGoogle Scholar
  68. Takeda M, Pekosz A, Shuck K, Pinto LH, Lamb RA (2002) Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture. J Virol 76: 1391–1399PubMedCrossRefGoogle Scholar
  69. Taniguchi T, Palmieri M, Weissmann C (1978) QB DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature 274: 223–228PubMedCrossRefGoogle Scholar
  70. Volchkov VE, Volchkova VA, Muhlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291: 1965–1969Google Scholar
  71. Wagner E, Engelhardt OG, Weber F, Haller O, Kochs G (2000) Formation of virus-like particles from cloned cDNAs of thogoto virus. J Gen Virol 81: 2849–2853PubMedGoogle Scholar
  72. Wagner E, Engelhardt OG, Gruber S, Haller O, Kochs G (2001) Rescue of recombinant Thogoto virus from cloned cDNA. J Virol 75: 9282–9286PubMedCrossRefGoogle Scholar
  73. Watanabe T, Watanabe S, Neumann G, Kida H, Kawaoka Y (2002) Immunogenicity and protective efficacy of replication-incompetent influenza virus-like particles. J Virol 76: 767–773PubMedCrossRefGoogle Scholar
  74. Weber F, Jambrina E, Gonzalez S, Dessens JT, Leahy M, Kochs G, Portela A, Nuttall PA, Haller O, Ortin J, Zurcher T (1998) In vivo reconstitution of active Thogoto virus polymerase: assays for the compatibility with other orthomyxovirus core proteins and template RNAs. Virus Res 58: 13–20PubMedCrossRefGoogle Scholar
  75. Whelan SP, Ball LA, Barr JN, Wertz GT (1995) Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci USA 92: 8388–8392PubMedCrossRefGoogle Scholar
  76. Yasuda J, Bucher DJ, Ishihama A (1994) Growth control of influenza A virus by M1 protein: analysis of transfectant viruses carrying the chimeric M gene. J Virol 68: 8141–8146PubMedGoogle Scholar
  77. Zobel A, Neumann G, Hobom G (1993) RNA polymerase I catalysed transcription of insert viral cDNA. Nucleic Acids Res 21: 3607–3614PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • G. Neumann
    • 1
  • Y. Kawaoka
    • 1
    • 2
    • 3
  1. 1.Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Microbiology and Immunology, Institute of Medical ScienceUniversity of TokyoTokyoJapan
  3. 3.Core Research for Evolutional Science and TechnologyJapan Science and Technology CorporationSaitamaJapan

Personalised recommendations