Skip to main content

Plastizität, Lernen, Gedächtnis

  • Chapter
Biologische Psychologie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 373 Accesses

Zusammenfassung

Die Anpassung des Organismus an sich ständig verändernde Umweltbedingungen erfordert eine Vielzahl homöostatischer und nichthomöostatischer Anpassungsvorgänge. All diese physiologischen Regelungen setzen aber voraus, daß der Organismus lernt, potentiell gefährdende Situationen und Reize schon vor deren Auftreten zu vermeiden und potentiell nützliche Situationen aufzusuchen. Meist werden solche„nützlichen“ Situationen auch als lustvoll erlebt und deshalb wiederholt aufgesucht. Die Lernpsychologie hat in den letzten 100 Jahren die psychologischen Gesetzmäßigkeiten, die dem Lernen von Annäherung und Vermeidung und dem Lernen von Signalbedeutungen zugrunde liegen, im wesentlichen aufgeklärt. Erst ab Mitte des 20.Jahrhunderts begann man, vorerst im Tierversuch, die biologischen Grundlagen dieser im Reich des Lebendigen universell geltenden Lerngesetze systematisch physiologisch zu erforschen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehr- und Handbücher

  1. Braitenberg V (1977) On the Texture of Brains. Springer, Heidelberg, Berlin, New York

    Google Scholar 

  2. Davis HP, Squire LR (1984) Protein synthesis and memory: a review. Psychol. Bull. 96: 518–559

    Google Scholar 

  3. Finger S, Stein DG (1982) Brain Damage and Recovery. Academic Press, New York

    Google Scholar 

  4. Hawkins RD, Kandel ER (1984) Is there a cell-biological alphabet for simple forms of learning? Psychol. Rev. 91: 375–391

    Google Scholar 

  5. Hebb DO (1949) The Organization of Behavior. Wiley, New York

    Google Scholar 

  6. Horn G (1985) Memory, Imprinting and the Brain. Oxford Univ. Press, Oxford

    Google Scholar 

  7. John ER (1967) Mechanism of Memory. Academic Press, New York

    Google Scholar 

  8. Kandel ER, Schwartz JH, Jessell TM (eds) (1991) Principles of Neural Science, 3rd edn. Elsevier, New York

    Google Scholar 

  9. Bourne LE, Russo NF (1998) Psychology. W. Norton, New York

    Google Scholar 

  10. Kolb B, Whishaw IQ (1985) Fundamentals of Human Neuropsychology, 2nd edition. Freeman, New York

    Google Scholar 

  11. Marler P, Terrace HS (eds) (1984) The Biology of Learning. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  12. Reinis S, Goldman SM (1983) The Chemistry of Behavior. Plenum, New York

    Google Scholar 

  13. Rohracher H (1967) Die Arbeitsweise des Gehirns und die psychischen Vorgänge. Barth,München

    Google Scholar 

  14. Rosenzweig MR, Leiman AL, Breedlove JM (1996) Biological Psychology. Mass.: Sinauer

    Google Scholar 

  15. Schmidt RF, Thews G (Hrs) (1995) Physiologie des Menschen. 26. Aufl. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  16. Squire LR (1987) Memory and Brain. Oxford Univ. Press, Oxford

    Google Scholar 

  17. Woody CD (1982) Memory, Learning and Higher Brain Function. Springer, Berlin, Heidelberg, New York

    Google Scholar 

Einzel- und Übersichtsarbeiten

  1. Atkinson RC, Shiffrin RM (1968) Human memory: A proposed system and its control process. In: Spence KW, Spence ST (Eds) The Psychology of Learning and Motivation. Vol. 2. Academic Press, New York

    Google Scholar 

  2. Berman N, Sterling P (1976) Cortical suppression of the retino-collicular pathology in the monocularly deprived cat. J Physiol 255: 263–273

    Google Scholar 

  3. Black IB, Adler JE, Dreyfus CF, Friedman WF, Lagamma, EF, Roach AM (1987) Biochemistry of information storage in the nervous system. Science 236: 1263–1268

    Article  PubMed  Google Scholar 

  4. Cahill L, Prins B, Weber M, Mcgaugh J (1994) ß-adrenergic activation and memory for emotional events. Nature 371: 702–704

    Article  PubMed  Google Scholar 

  5. Conel SL (1939–1963) Postnatal Development of the Human Cerebral Cortex. Vol. I-VI. Harvard Univ. Press, Cambridge

    Google Scholar 

  6. Cotman CW, Nadler LG (1978) Reactive synaptogenesis in the hippocampus. In: Cotman CW (Ed) Neuronal Plasticity. Raven, New York

    Google Scholar 

  7. Cowan WM, Shooter EM, Stevens CF, Thompson RF (eds) (1994,1995) Annual Review of Neuroscience. Vol 17,1994, Vol 18,1995. Annual Rev Inc, Palo Alto

    Google Scholar 

  8. Daum I, Ackermann H, Schugens MM, Rei-Mold C, Dichgans J, Birbaumer N (1993) The cerebellum and cognitive functions in humans. Beh Neuroscience 107: 411–419

    Article  Google Scholar 

  9. Davis HP, Roitblat HL (1984) Cholinergic pharmacology, behavior and age-related memory decline. In: Squire L, Butters N (Ed) Neuropsychology of Memory. Guilford Press, New York

    Google Scholar 

  10. Drachman DA (1978) Central cholinergic system and memory. In: Lipton A, Di Mascio A, Killman KF (Eds) (1978) Psychopharmacology. Raven, New York

    Google Scholar 

  11. Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375: 482–484

    Google Scholar 

  12. Gazzaniga M (ed) (1995) The Cognitive Neurosciences. MIT Press, Hongkong

    Google Scholar 

  13. Hailman JP (1969) How an instinct is learned. Sci Am 221: 6

    Article  Google Scholar 

  14. Hyden H (1970) The question of a molecular basis of the memory trace. In: Pribram KH, Broadbent DE (Eds) Biology of Memory. Academic Press, New York

    Google Scholar 

  15. Katz JJ, Halstaed WC (1950) Protein organisation and mental function. Comp Psychol Monogr 20(103)a-38

    Google Scholar 

  16. Koob, GF (1987) Neuropeptides and memory. In: Iverson LL, Iverson SD, Snyder SH (Eds): Handbook of Psychopharmacology, Vol. s9. New Directions in Behavioral Pharmacology. Plenum Press, New York pp 531–674

    Google Scholar 

  17. Larson S, Lynch G (1986) Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 232: 985–988

    Google Scholar 

  18. Linden DJ, Connor J (1995) Long-term synaptic depression. In: Cowan WM, Shooter EM, Stevens CF, Thompson RF (eds) (1994, 1995) Annual Review of Neuroscience. Vol 17,1994, Vol 18,1995. Annual Rev Inc, Palo Alto

    Google Scholar 

  19. Lisman JE, IdiartMA (1995) Storage of 7±2 short-term memories in oscillatory subcycles. Science 267: 1512–1515

    Article  PubMed  Google Scholar 

  20. Milner B (1970) Memory and the medial temporal regions of the brain. In: Pribram KH, Broadbent DE (Eds) Biology of Memory. Academic Press, New York

    Google Scholar 

  21. Müller GE, Pilzecker A (1900) Experimentelle Beiträge zur Lehre vom Gedächtnis. Z. Psychol., Ergänzungsband

    Google Scholar 

  22. Quinn WG (1984) Work in invertebrates on the mechanism underlying learning. In: Marier P, Terrace HS (Eds) The Biology of Learning. Springer, Berlin, Heidelberg, New York, Tokyo pp 197–246

    Chapter  Google Scholar 

  23. Singer W, Gray CH (1995) Visual feature integration and the temporal correlation hypothesis. In: Cowan WM, Shooter EM, Stevens CF, Thompson RF (eds) Annual Review of Neuroscience. Vol 17, 1994, Vol 18, 1995. Annual Rev Inc, Palo Alto

    Google Scholar 

  24. Singer W (ed) (1994) Gehirn and Bewußtsein. Spektrum Verlag, Heidelberg

    Google Scholar 

  25. Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci 5o: 703–719

    Article  Google Scholar 

  26. Thompson RF, Krupa DJ (1994). Organization of memory traces in the mammalian brain. Annual Rev Neurosci 17: 519-549

    Google Scholar 

  27. Wallers ET,Ambran RT (1995) Long-term alterations induced by injury and by 5-HT in Aplysia sensory neurons. Trends in Neuroscience 18:137–142

    Google Scholar 

  28. Weinberger NM (1995) Retuning the brain by fear conditioning. In: M Gazzaniga (ed) (1995) The Cognitive Neurosciences. MIT Press, Hongkong

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birbaumer, N., Schmidt, R.F. (1999). Plastizität, Lernen, Gedächtnis. In: Biologische Psychologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06097-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06097-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06098-8

  • Online ISBN: 978-3-662-06097-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics