Skip to main content

Light Sensitivity of the Biological Clock

  • Chapter
Biological Rhythms

Abstract

Light is a ubiquitous input from the environment used by most species in one way or the other in regulation of their short and/ or long term activities. A response to light, the photoperiodic response, is the result of the interpretation of light input by the neuroendocrine machinery, collectively called the photoperiodic response system (PRS). Apart from the duration, gradual shifts in the intensity and wavelength of daily light are critical in regulation of the light (photic) sensitivity of the PRS. There is a direct relationship between the rate of initiation of a photoperiodic response and the intensity of light until the threshold is reached. A light wavelength to which PRS is maximally sensitive, or to which it has greater access, will induce a maximal response. There can also be differential effects of wavelength and intensity of light on circadian process(es) involved in the entrainment and induction of the photoperiodic clock, which may have adaptive implications. Synchronization to daily light-dark (LD) cycle may be achieved at dawn or dusk, depending whether the animal is day- or night-active, when there is relatively low intensity of light. By contrast, photoperiodic induction in many species occurs during long days of spring and summer when plenty of daylight at higher intensity is available later in the day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aschoff, J., ed., Biological rhythms. Handbook of behavioral neurobiology, Vol 4 (New York: Plenum) 1981

    Google Scholar 

  • Barott, H.G., Pringle, E.M. (1951) The effect of environment on growth and feed and water consumption of chicks. IV. The effect of light on early growth. J. Nutr. 45: 265–274.

    Google Scholar 

  • Bartholomew, G.A. Jr. (1949) The effect of light intensity and daylength on reproduction on reproduction in the English sparrow. Bull. Mus. Comp. Zool. 101: 431–476.

    Google Scholar 

  • Benoit, J. (1964) The role of the eye and of the hypothalamus in the photostimulation of gonads in the duck. Annals of the New York Academy of Science 117: 204–216.

    Article  CAS  Google Scholar 

  • Bentley, G.E., Goldsmith, A.R., Dawson, A., Briggs, C., Pemberton, M. (1998) Decreased light intensity alters the perception of day length by male European starlings (Sturnus vulgaris). J. Biol. Rhythms 13: 148–158. Bissonnette, T.H. (1931) Sexual periodicity. Quart. Rev. Biol. 11: 371–376.

    Google Scholar 

  • Blough, D.S. (1957) Spectral sensitivity in the pigeon. J. Optical Soc. Amer. 47: 827–833.

    Article  CAS  Google Scholar 

  • Bowmaker, J.K., Knowles, A. (1977) The visual pigments and oil droplets of the chicken retina. Vision Res. 17: 755–764.

    Article  PubMed  CAS  Google Scholar 

  • Brainard, G.C., Richardson, B.A., King, T.S., Matthews, S.A., Reiter, R.J. (1983) The suppression of pineal melatonin content and N-acetyltransferase activity by different light irradiance in the Syrian hamster: A dose response relationship. Endocrinol. 113: 293–296.

    Article  CAS  Google Scholar 

  • Brainard, G.C., Richardson, B.A., King, T.S., Reiter, R.J. (1984) The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster. Brain Res. 294: 333–339.

    Article  PubMed  CAS  Google Scholar 

  • Brainard, G.C., Richardson, B.A., Menaker, M., Fredrikson, R.H., Miller, L.S., Weleber, R.G., Cassone, V., Hudson, D. (1985) Effect of light wavelength on the suppression of nocturnal plasma melatonin in normal volunteers. Ann. N.Y. Acad. Sci. 453: 376–378.

    Article  Google Scholar 

  • Bunning, E. (1936) Die endogene Tagesrhythmik als Grundlage der Photoperiodische Reaktion. Ber. Deut. Bot. Ges. 54: 590–607.

    Google Scholar 

  • Burger, J.W. (1939) Some aspects of the roles of light intensity and the daily length of exposure to light in the sexual photoperiodic activation of the male starling. J. Exp. Zool. 81: 333–341.

    Article  Google Scholar 

  • Cardinali, D.P., Larin, F., Wurtman, R.J. (1972) Action spectra for effects of light on hydroxyindole-omethyltransferases in rat pineal, retina and harderian gland. Endocrinol. 91: 877–886.

    Google Scholar 

  • Cherry, P., Barwick, M.W. (1962) The effect of light on broiler growth. 1. Light intensity and colour. British Poult. Sci. 3: 31–39.

    Google Scholar 

  • Comsweet, T.N. (1970) Visual Perception. Academic Press, London.

    Google Scholar 

  • Dijk, D., Cajochen, C., Borbely, A.A. (1991) Effect of a single 3-hour exposure to bright light on core body temperature and sleep in humans. Neuronsci. Lett. 121: 59–62.

    Google Scholar 

  • Elliot, J.A., Stetson, M.H., Menaker, M. (1972) Regulation of testis function in golden hamsters: A circadian clock measures photoperiodic time. Science 178: 771–773.

    Article  Google Scholar 

  • Farner, D.S. (1959) Photoperiodic and related control of annual gonadal cycles. In: Withrow, R.B. (ed. )

    Google Scholar 

  • Photoperiodism and Related Phenomena in Plants and Animals. Am. Assoc. Advance Sci., Washington, D.C. pp. 716–750.

    Google Scholar 

  • Follett, B.K., Millette, J.J. (1982) Photoperiodism in quail: testicular growth and maintenance under skeletal photoperiod. J. Endocrinol. 93: 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Foster, R.G., Follett, B.K. (1985) The involvement of a rhodopsin-like photopigment in the photoperiodic response of Japanese quail. J. Comp. Physiol. A 157: 519–528.

    Google Scholar 

  • Griffith, M.K., Minton, J.E. (1992) Effect of light intensity on circadian profiles of Melatonin, Prolactin, ACTH and Cortisol in pigs. J. Anim. Sci. 70: 492–498.

    PubMed  CAS  Google Scholar 

  • Gwinner, E., Scheuerlein, A. (1998) Seasonal changes in day-light intensity as a potential zeitgeber of circannual rhythms in equatorial stonechats. J. Ornithol. 139: 407–412.

    Article  Google Scholar 

  • Hakim, H., DeBernardo, A.P., Silver, R. (1991) Circadian locomotor rhythms, but not photoperiodic responses, survive surgical isolation of the SCN in hamsters. J. Biol. Rhythms 6: 97–113.

    Google Scholar 

  • Hamner, W.M., Enright, J.T. (1967) Relationship between photoperiodism and circadian rhythms of activity in the house finch. J. Exp. Biol. 46: 43–61.

    Google Scholar 

  • Hollwich, F. (1979) The influence of ocular light perception on metabolism in man and animal, Springer, New York.

    Book  Google Scholar 

  • Farner, D.S. (1959) Photoperiodic and related control of annual gonadal cycles. In: Withrow, R.B. (ed.) Photoperiodism and Related Phenomena in Plants and Animals. Am. Assoc. Advance Sci., Washington, D.C. pp. 716–750.

    Google Scholar 

  • Homma, K., Sakakibara, Y. (1971) Encephalic photoreceptors and their significance in photoperiodic control of sexual activity in Japanese quail. In: Menaker, M. (ed.) Biochronometry. Natl. Acad. Sci., Washington, D.C. pp. 333–341.

    Google Scholar 

  • Homma, K., Ohta, M., Sakakibara, Y. (1977) in First int symp avian endocrinol, Follett, B.K. (ed.) (University College of North Wales, UK), pp. 25.

    Google Scholar 

  • Joshi, D., Chandrashekaran, M.K. (1984) Bright light flashes of 0.5 milliseconds reset the circadian clock of a microchiropteran bat. J. Exp. Zool. 230: 325–328.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, B.N., Udaykumar, K. (1998) Changes in ovarian follicular kinetics in intact and blinded and parietal shielded frogs exposed to different spectra of light. Gen. Comp. Endocrinol. 109: 310–314.

    Article  PubMed  CAS  Google Scholar 

  • Juss, T.S., Wing, V.M., Kumar, V., Follett, B.K. (1995) Does an unusual entrainment of the circadian system under T36h photocycles reduce the critical daylength for photoperiodic induction in the Japanese quail. J. Biol. Rhythms 10: 17–32.

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick, C.M. (1955) Factors in photoperiodism of Bobwhite quail. Physiol. Zool. 28: 255–264.

    Google Scholar 

  • Klante, G., Steinlechner, S. (1995) A short red light pulse during dark phase of LD-cycle perturbs the hamster’s circadian clock. J. Comp. Physiol. A 177: 775–780.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, T., Johnson, C.H., Hastings, J.W. (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 Strain of Chlamydomonas. I: Cells in darkness. Plant Physiol. 95: 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, V., Follett, B.K. (1993) The nature of photoperiodic clock in vertebrates. Proc. Zool. Soc. Calcutta; J.B.S. Haldane Commemoration Vol. pp. 217–227.

    Google Scholar 

  • Kumar, Rani, S. (1996) Effects of wavelength and intensity of light in initiation of body fattening and gonadal growth in a migratory bunting under complete and skeleton photoperiods. Physiol. Behay. 60: 625–631.

    CAS  Google Scholar 

  • Kumar, V., Rani, S. (1999) Light sensitivity of the photoperiodic response system in higher vertebrates: Wavelength and intensity effects. Indian J. Exp. Biol. 37: 1053–1064.

    CAS  Google Scholar 

  • Kumar, V, Jain, N., Follett, B.K. (1996) The photoperiodic clock in blackheaded buntings (Emberiza melanocephala) is mediated by self-sustaining circadian system. J. Comp. Physiol. A 179: 59–64.

    Google Scholar 

  • Kumar, V., Gwinner, E., Van’t Hof, T.J. (2000a) Circadian rhythms of melatonin in the European starling exposed to different lighting conditions: Relationship with locomotor and feeding rhythms. J. Comp. Physiol. A 186: 205–215.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, V., Rani, S., Malik, S. (2000b) Wavelength of light mimics the effects of the duration and intensity of a long photoperiod in stimulation of gonadal responses in the male blackheaded bunting (Emberiza melanocephala). Curr. Sci 79: 508–510.

    CAS  Google Scholar 

  • Lohmann, K.J. (1991) Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). J. Exp. Biol. 155: 37–49.

    PubMed  CAS  Google Scholar 

  • Lynch, H.J., Rivest, R.W., Ronsheim, P.M., Wurtman, R.J. (1981) Light intensity and the control of melatonin secretion in rats. Neuroendocrinol. 33: 181–185.

    Article  CAS  Google Scholar 

  • Marhold, S., Burda, Wiltschko, W. (1991) Magnetkompassorientierung and Richtungspraferenzen bei subterranen Graumullen, Cryptomys hottentotus (Rodentia). Verhandlungen der Deutschen Zoologischen Gesellschaft, 84: 354.

    Google Scholar 

  • Menaker, M., Eskin, A. (1967) Circadian clock in photoperiodic time measurement: a test of the Banning hypothesis. Science 157: 1182–1185.

    Article  PubMed  CAS  Google Scholar 

  • Menaker, M., Roberts, R., Elliot, J., Underwood, H. (1970) Extraretinal light perception in sparrow. III: The eyes do not participate in photoperiodic photoreception. Proc. Natl. Acad. Sci. USA 67: 320–325.

    Article  PubMed  CAS  Google Scholar 

  • Minnemann, K.P., Lynch, H.J., Wurtman, R.J. (1974) Relationship between environmental light intensity and retina-mediated suppression of rat pineal serotonin N-acetyltransferase. Life Sci. 15: 1791–1796.

    Article  Google Scholar 

  • Morita, T., Tokura, H. (1996) Effects of light of different color temperature on the nocturnal changes in core temperature and melatonin in humans. Appl Human Sci. 15 (5): 243–246.

    Article  PubMed  CAS  Google Scholar 

  • Morita, T., Teramoto, Y., Tokura, H. (1995) Inhibitory effect of light of different wavelengths on fall of core temperature during the nighttime. Jpn. J. Physiol. 45: 667–671.

    Article  PubMed  CAS  Google Scholar 

  • Morita, T., Tokura, H.,Wakamura, T., Park, S.J., Teramoto, Y. (1997) Effects of the morning irradiation of light with different wavelengths on the behavior of core temperature and melatonin in humans. Appl. Human Sci. 16(3): 103–105.

    Google Scholar 

  • Munro, U., Munro, J.A., Phillips, J.B., Wiltschko, W. (1997) Effect of wavelength of light pulse magnetization on different magnetoreception systems in a migratory bird. Australian J. Zool. 45: 189–198.

    Google Scholar 

  • Nester, K.E., Brown, K.I. (1972) Light intensity and reproduction of Turkey hens. Poultry Sci. 51: 117–121.

    Article  Google Scholar 

  • Nouber, J.F.W., van Nuys, W.M., Steenbergen, J.C.V. (1983) Colour changes in a light regimen as synchronizers of circadian activity. J. Comp. Physiol. 151: 359–366.

    Article  Google Scholar 

  • Oishi, T., Lauber, J.K. (1973) Photoreception in the photosexual response of quail: I. Site of photorecpetor. Amer. J. Physiol. 225: 155–158.

    PubMed  CAS  Google Scholar 

  • Oliver, J., Bayle, J.Q. (1982) Brain photoreceptors for the photo-induced testicular responses in birds. Experientia 38: 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  • Osol, J.G., Foss, D.C., Carew, L.B. (1980) Effect of light environment and pinealectomy on growth and thyroid function in the broiler cockerel. Poult. Sci. 59: 647–653.

    Article  CAS  Google Scholar 

  • Phillips, J.B., Borland, S.C. (1992) Behavioural evidence for the use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359: 142–144.

    Article  Google Scholar 

  • Phillips, J.B., Borland, S.C. (1994) Use of a specialized magnetoreception system for homing by the eastern red-spotted newt, Notophthalmus viridescens. J. Exp. Biol. 188: 275–291.

    PubMed  Google Scholar 

  • Pickard, G.E., Turek, F.W. (1983) The suprachiasmatic nuclei: The circadian clocks. Brain Res. 268: 201–210. Pittendrigh, C.S. (1972) Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc. Natl. Acad. Sci. (Wash.) 69: 2734–2737.

    Google Scholar 

  • Provencio, I., Foster, R. (1995) Circadian rhythms in mice can be regulated photoreceptors with cone-like characteristics. Brain Res. 694: 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, T.P. (1980) Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon. J. Comp. Physiol. A 137: 243–248.

    Article  Google Scholar 

  • Rani, S., Kumar, V. (1999) Time course of senstivity of the photoinducible phase to light in the redheaded bunting. Biol. Rhythm Res. 30: 555–562

    Article  Google Scholar 

  • Rani, S., Kumar, V. (2000) Phasic response of photoperiodic clock to wavelength and intensity of light in the redheaded bunting, Emberiza bruniceps. Physiol. Behay. 69: 277–283.

    Article  CAS  Google Scholar 

  • Roenneberg, T., Deng, T.S. (1997) Photobiology of the Gonyaulax circadian system: I. Different phase response curves for red and blue light. Planta 202: 484–501.

    Google Scholar 

  • Rollo, M., Domm, L.V. (1943) Light requirements of weaver finch. I. Light period and intensity. Auk 60: 357367.

    Google Scholar 

  • Saldanha, C.J., Silverman, A-J, Silver, R. (2001) Direct innervation of GnRH neurons by encephalic photoreceptors in birds. J. Biol. Rhythms 16: 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Scott, R.P., Siopes, T.D. (1994) Light color: effect on blood cells, immune function and stress status in turkey hens. Comp. Biochem. Physiol. A 108: 161–168.

    Article  CAS  Google Scholar 

  • Siopes, T.D., Wilson, F.E. (1980) Participation of the eyes in the photosexual response of Japanese quail (Coturnix coturnix japonica). Biol. Reprod. 23: 342–357.

    Google Scholar 

  • Takahashi, T.S., Decoursey, P.J., Baumen, L, Menaker, M. (1984) Spectral sensitivity of a novel photosensitive system mediating entrainment of mammalian circadian rhythms. Nature 308: 186–188.

    Article  PubMed  CAS  Google Scholar 

  • Tosini, G., Avery, R. (1996) Spectral composition of light influences thermoregulatory behaviour in a Lacertid lizard 9Podarcis muralis). J. Therm. Biol. 21: 191–195.

    Google Scholar 

  • Trinder, J., Armstrong, S.M., O’Brien, C., Luke, D., Martin, M.J. (1996) Inhibition of melatonin secretion onset by low levels of illumination. J. Sleep Res. 5: 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Underwood, H., Menaker, M. (1970) Extraretinal light perception: entrainment of the biological clock controlling lizard locomotor activity. Photochem. Photobiol. 24: 227–243.

    Google Scholar 

  • Vanecek, J., Illnerova, H. (1982) Night pineal N-acetyltransferase activity in rats exposed to white or red light pulses of various intensity and duration. Experientia 38: 1318–1320.

    Article  CAS  Google Scholar 

  • Vriend, J., Lauber, J.K. (1973) Light intensity, wavelength and quantum effects on gonads and spleen of the deer mouse. Nature 244: 37–38.

    Article  PubMed  CAS  Google Scholar 

  • Wabeck, C.J., Skoglund, W.C. (1973) Influence of radiant energy from fluorescent light sources on growth, mortality and feed conversion of broilers. Poult. Sci. 53: 2055–2059.

    Google Scholar 

  • Wiltschko, R., Wiltschko, W. (1995) Magnetic Orientation in Animals. Springer-Verlag: Berlin, Heidelberg, New York.

    Google Scholar 

  • Wiltschko, W., Munro, U., Ford, Wiltschko R (1993) Red light disrupts magnetic orientation of migratory birds. Nature 364: 525–527.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rani, S., Singh, S., Kumar, V. (2002). Light Sensitivity of the Biological Clock. In: Kumar, V. (eds) Biological Rhythms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06085-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06085-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06087-2

  • Online ISBN: 978-3-662-06085-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics