Biological Rhythms in Arctic Animals

  • E. Reierth
  • K.-A. Stokkan


With increasing latitude the daily light-dark cycle becomes progressively distorted during substantial parts of the year. At high-Arctic latitudes (77–81°N) there is continuous darkness (polar night) between November and February and continuous light (polar day) from April to September. Circadian mechanisms generally rely heavily on the synchronizing or entraining effect of the daily light/dark cycle, and it is therefore important to study animals living under conditions where this zeitgeber is absent. Migratory birds visiting the Arctic in summer to breed apparently perceive sufficient environmental rhythmic information to remain entrained. Humans and resident animals such as ptarmigan and reindeer do not, but whereas humans show persistent circadian freerunning sleep/ wake rhythms, reindeer and ptarmigan become continuously active. This is also revealed by their secretion of melatonin, which is markedly reduced at those times of the year when the light/dark cycle is absent. Presumably, their endogenous biological clocks or circadian machinery is flexible and becomes dampened to such an extent as to allow these animals to exploit their environment maximally at those times of the year when there is no marked differences between day and night.


Activity Rhythm Biological Rhythm Melatonin Secretion Polar Night Plasma Melatonin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Binkley, S., Mosher, K. (1992) Activity rhythms in house sparrows exposed to natural lighting for one year. J. Interdiscipl. Cycle Res. 23: 17–33.CrossRefGoogle Scholar
  2. Brown, R.G.B. (1963) The behaviour of the willow warbler Phylloscopus trochilus in continuous daylight. Ibis 105: 63–75.CrossRefGoogle Scholar
  3. Chabot, C.C., Menaker, M. (1992) Effects of physiological cycles of infused melatonin on circadian rhythmicity in pigeons. J. Comp. Physiol. A 170: 615–622.CrossRefGoogle Scholar
  4. Cockrem, J.F. (1991) Plasma melatonin in the Adelie penguin (Pygoscelis adeliae) under continuous daylight in Antarctica. J. Pineal. Res. 10: 2–8.PubMedCrossRefGoogle Scholar
  5. Cullen, J.M. (1954) The diurnal rhythm of birds in the Arctic summer. Ibis 96: 31–46.CrossRefGoogle Scholar
  6. Daan, S., Aschoff, J. (1975) Circadian rhythms of locomotor activity in captive birds and mammals: Their variations with season and latitude. Oecologia (Berl.). 18: 269–316.CrossRefGoogle Scholar
  7. Demmelmeyer, H., Haarhaus, D. (1972) Die Lichtqualität als Zeitgeber für Zebrafinken (Taeniopygia guttata). J. Comp. Physiol. 78: 25–29.Google Scholar
  8. Eloranta, E., Timisjärvi, J., Nieminen, M., Ojutkangas, V., Leppäluoto, J., Vakkuri, O. (1992) Seasonal and daily patterns in melatonin secretion in female reindeer and their calves. Endocrinol. 130: 1645–1652.CrossRefGoogle Scholar
  9. Gwinner, E., Hau, M., Heigl, S. (1997) Melatonin: Generation and modulation of avian circadian rhythms. Brain. Res. 44(4): 439–444.Google Scholar
  10. Hanbrekke, T.L., Reierth, E., Sharp, P.J., Stokkan, K.A. (1998) Melatonin treatment does not affect long-day induced changes in high-Arctic ptarmigan (abstract). Sixth Meeting SRBR 49A.Google Scholar
  11. Heigl, S., Gwinner, E. (1995) Synchronization of circadian rhythms of house sparrows by oral melatonin: Effects of changing period. J. Biol. Rhythms 10(3): 225–233.PubMedCrossRefGoogle Scholar
  12. Hendel, R.C., Turek, F.W. (1978) Suppression of locomotor activity in sparrows by treatment with melatonin. Physiol. Behavior. 21: 275–278.CrossRefGoogle Scholar
  13. Höglund, H.N. (1980) Studies on the winter ecology of the willow grouse Lagopus lagopus lagopus L. Swedish Sportsmen’s Association, 11(5): 248–270.Google Scholar
  14. Irving, L., West, G.C., Peyton, L.J. (1967) Winter feeding program of Alaska willow ptarmigan shown by crop contents. Condor 69: 69–77.CrossRefGoogle Scholar
  15. Johnsson, A., Englemann, W., Klemke, W., Ekse, A.T. (1979) Free-running human circadian rhythms in Svalbard. Z. Naturforsch. 34: 470–473.Google Scholar
  16. Karplus, M. (1952) Bird activity in the continuous daylight of Arctic summer. Ecology 33: 129–134.CrossRefGoogle Scholar
  17. Krüll, F (1976a) Zeitgebers for animals in the continuous daylight of high arctic summer. Oecologia (Berl.) 24: 149–158.CrossRefGoogle Scholar
  18. Krüll, F. (1976b) The position of the sun is a possible zeitgber for Arctic animals. Oecologia (Berl.) 24: 141–148.CrossRefGoogle Scholar
  19. Krüll, F. (1976c) The synchronizing effect of slight oscillations of light intensity on activity period of birds. Oecologia (Berl.) 25: 301–308.CrossRefGoogle Scholar
  20. Lindg rd K, Stokkan KA (1989) Daylength control of food intake and body weight in Svalbard ptarmigan. Ornis. Scand. 20: 176–180.CrossRefGoogle Scholar
  21. Lynch, H.J., Rivest, R.W., Ronsheim, P.M., Wurtman, R.J. (1981) Light intensity and the control of melatonin secretion in rats. Neuroendocrinol. 33: 181–185.CrossRefGoogle Scholar
  22. Marshall, A.J. (1938) Bird and animal activity in the Arctic. J. Animal Ecol. 7: 248–250.CrossRefGoogle Scholar
  23. Meyer, W.E., Millam, J.R. (1991) Plasma melatonin levels in Japanese quail exposed to dim light are determined by subjective interpretation of day and night, not light intensity. Gen. Comp. Endocrinol. 82: 377–385.PubMedCrossRefGoogle Scholar
  24. Menaker, M., Tosini, G. (1996) The evolution of vertebrate circadian systems. In. Honma, K., Honma, S. (eds.). Circadian Organization and Oscillatory Coupling. Hokkaido University Press, Sapporo, pp. 39–52.Google Scholar
  25. Michè, F., Vivien-Roels, B., Pevet, P., Spehner, C., Robin, J.P., LeMaho, Y. (1991) Daily pattern of melatonin secretion in an Antarctic bird, the emperor penguin, Aptenodytes forsteri: Seasonal variations, effect of constant illumination and of administration of isoproterenol or propranolol. Gen. Comp. Endocrinol. 84: 249–263.PubMedCrossRefGoogle Scholar
  26. Mortensen, A., Blix, A.S. (1989) Seasonal changes in energy intake, energy expenditure, and digestibility in captive Svalbard rock ptarmigan and Norwegian willow ptarmigan. Ornis. Scand. 20: 22–28.CrossRefGoogle Scholar
  27. Mortensen, A., Unander, S., Kolstad, M., Blix, A.S. (1983) Seasonal changes in body composition and crop content of Spitzbergen ptarmigan Lagopus mutus hyperboreus. Orris. Scand. 14: 144–148.CrossRefGoogle Scholar
  28. Oshima, I., Yamada, H., Sato, K., Ebihara, S. (1987) The phase relationship between circadian rhythms of locomotor activity and circulating melatonin in the pigeon (Columba livia). Gen. Comp. Endocrinol. 67: 409-414.PubMedCrossRefGoogle Scholar
  29. Pohl, H. (1999) Spectral composition of light as a zeitgeber for birds living in the high Arctic summer. Physiol. Behay. 67: 327-337.CrossRefGoogle Scholar
  30. Pulliainen, E. (1978) Behaviour of a willow grouse Lagopus 1. lagopus at the nest. Orris. Fennica. 55: 141-148.Google Scholar
  31. Reierth, E., Stokkan, K.A. (1998a) Dual entrainment by light and food in the Svalbard ptarmigan (Lagopus mutus hyperboreus). J. Biol. Rhythms 13(5): 393–402.PubMedGoogle Scholar
  32. Reierth, E., Stokkan, K.A. (1998b) Activity rhythm in high-arctic Svalbard ptarmigan (Lagopus mutus hyperboreus). Can. J. Zool. 76: 2031-2039.Google Scholar
  33. Reierth, E., Van’t Hof, T.J., Stokkan, K.A. (1999) Seasonal and daily variations in plasma melatonin in the high-arctic Svalbard ptarmigan (Lagopus mucus hyperboreus). J. Biol. Rhythm 14(4): 314–319.CrossRefGoogle Scholar
  34. Reiter, R.J. (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49: 654–664.PubMedCrossRefGoogle Scholar
  35. Reiter, R.J., Steinlechner, S., Richardson, B.A., and King, T.S. (1983) Differential response of pineal melatonin levels to light at night in laboratory raised and wild-captured 13-lined ground squirrels (Spermophilus tridecemlineatus). Life Sci. 32: 2625–2629.PubMedCrossRefGoogle Scholar
  36. Stokkan, K.A. (1992) Energetics and adaptations to cold in ptarmigan in winter. Orris. Scand. 23: 366–370.CrossRefGoogle Scholar
  37. Stokkan, K.A., Mortensen, A., Blix, A.S. (1986a) Food intake, feeding rhythm, and body mass regulation in Svalbard rock ptarmigan. Am. J. Physiol. 251: R264–R267.PubMedGoogle Scholar
  38. Stokkan, K.A., Sharp, P.J., Unander, S. (1986b) The annual breeding cycle of the high-Arctic Svalbard ptarmigan (Lagopus mutus hyperboreus). Gen. Comp. Endocrinol. 61: 446-451.PubMedCrossRefGoogle Scholar
  39. Stokkan, K.A., Tyler, N.J.C., Reiter, J.R. (1994) The pineal gland signals autumn to reindeer (Rangifertarandus tarandus) exposed to the continuous daylight of the Arctic summer. Can. J. Zool. 72: 904–909.CrossRefGoogle Scholar
  40. Van Oort, B.E.H., Stokkan, K.A., Tyler, N.J.C. (1999) Long-term patterns of activity in relation to photoperiod in free-ranging reindeer and sheep (abstract). 10th. Arctic Ungulate Conference. Tromso, Norway.Google Scholar
  41. Van’t Hof, T.J., Gwinner, E., Wagner, H. (1998) A highly rudimentary circadian melatonin profile in a nocturnal bird, the barn owl (Tyto alba). Naturwissenschaften 85: 402–404.CrossRefGoogle Scholar
  42. West GC (1968) Bioenergetics of captive willow ptarmigan under natural conditions. Ecology 49: 1035–1045.CrossRefGoogle Scholar
  43. Yamada, H., Oshima, I., Sato, K., Ebihara, S. (1988) Loss of the circadian rhythms of locomotor activity, food intake and plasma melatonin concentration induced by constant bright light in the pigeon (Columba livia). J. Comp. Physiol. A 163: 459–463.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • E. Reierth
    • 1
  • K.-A. Stokkan
    • 1
  1. 1.Department of Arctic Biology and Institute of Medical BiologyUniversity of TromsøTromsøNorway

Personalised recommendations