Skip to main content

Circadian Organization in Fish and Amphibians

  • Chapter
Biological Rhythms

Abstract

Circadian systems in fish and amphibians share several characteristics with other non-mammalian vertebrates. The most salient of these characteristics at the physiological level is the presence in multiple tissues of independently photosensitive and self-sustaining circadian oscillators. The circadian oscillators that regulate melatonin synthesis in the pineal and retina have been the most extensively investigated. In particular, studies of teleost pineals and of the retina of Xenopus laevis have contributed to our understanding of the cellular and molecular bases of rhythm generation, entrainment and output pathways in these organs. However, our understanding of how these and other oscillatory structures interact to drive rhythmicity in intact fish and amphibians has lagged behind progress in other vertebrates, primarily because convenient and reliable measures of behavioral rhythmicity were lacking. Recent technical advances have made it possible to record robust swimming activity rhythms from larval zebrafish. These methods may also be applicable to measurement of behavioral rhythms in other fish and amphibians. Recent studies of the zebrafish and Xenopus homologs of mammalian clock-related genes indicates that molecular clock mechanisms in fish and amphibians are similar, but not identical to those in other vertebrates. In particular, these studies have revealed new complexities in molecular mechanisms of vertebrate circadian rhythmicity, and they have also contributed to our understanding of system organization in these animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, M.A. (1992) Rhythms in Fishes. Plenum Press, New York.

    Book  Google Scholar 

  • Anderson, K.D. (1987) Role of the eyes, frontal organ and pineal organ in the generation of the circadian activity rhythm and its entrainment by light in the South African clawed frog, Xenopus laevis. Ph.D. Dissertation, Northwestern University.

    Google Scholar 

  • Bégay, V., Falcon, J., Cahill, G.M., Klein, D.C., Coon, S.L. (1998) Transcripts encoding two melatonin synthesis enzymes in the teleost pineal organ: circadian regulation in pike and zebrafish, but not in trout. Endocrinol. 139: 905–912.

    Article  Google Scholar 

  • Besharse, J.C., Iuvone, P.M. (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305: 133–135.

    Article  PubMed  CAS  Google Scholar 

  • Bolliet, V., Ali, M.A., Lapointe, F.J., Falcon, J. (1996) Rhythmic melatonin secretion in different teleost species: an in vitro study. J. Comp. Physiol. B 165: 677–683.

    Google Scholar 

  • Bolliet, V., Bégay; V., Taragnat, C., Ravault, J.P., Collin, J.P., Falcon, J. (1997) Photoreceptor cells of the pike pineal organ as cellular circadian oscillators. Eur. J. Neurosci 9: 643–653.

    Google Scholar 

  • Burrill, J.D., Easter, S.S. Jr. (1991) Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio), J. Comp. Neurol. 346: 583–600.

    Google Scholar 

  • Cahill, G.M. (1996) Circadian regulation of melatonin production in cultured zebrafish pineal and retina. Brain Res. 708: 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Cahill, G.M. (1997) Circadian melatonin rhythms in cultured zebrafish pineals are not affected by catecholamine agonists. Gen. Comp. Endocrinol. 105: 270–275.

    Google Scholar 

  • Cahill, G.M., Besharse, J.C. (1991) Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors. J. Neurosci. 11: 2959–71.

    PubMed  CAS  Google Scholar 

  • Cahill, G.M., Besharse, J.C. (1993) Circadian clock functions localized in Xenopus retinal photoreceptors. Neuron 10: 573–577.

    CAS  Google Scholar 

  • Cahill, G.M., Besharse, J.C. (1995) Circadian rhythmicity in vertebrate retinas: Regulation by a photoreceptor oscillator. Prog. Retinal Eye Res. 14: 267–291.

    Google Scholar 

  • Cahill, G.M., Hurd, M.W., Batchelor, M.M. (1998) Circadian rhythmicity in the locomotor activity of larval zebrafish. Neuroreport 9: 3445–3449.

    Article  PubMed  CAS  Google Scholar 

  • Cermakian, N., Whitmore, D., Foulkes, N.S., Sassone-Corsi, P. (2000) Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function. Proc. Natl. Acad. Sci. USA 97: 4339–4344.

    Google Scholar 

  • Coon, S.L., Bégay, V., Falcon, J., Klein, D.C. (1998) Expression of melatonin synthesis genes is controlled by a circadian clock in the pike pineal organ but not in the trout. Biol. Cell. 90: 399–405.

    Google Scholar 

  • Coon, S.L., Bégay, V., Deurloo, D., Falcon, J., Klein, D.C. (1999) Two arylalkylamine N-acetyltransferase genes mediate melatonin synthesis in fish. J. Biol. Chem. 274: 9076–9082.

    Google Scholar 

  • Falcon, J., Marmillon, J.B., Claustrat, B., Collin, J.P. (1989) Regulation of melatonin secretion in a photoreceptive pineal organ: an in vitro study in the pike. J. Neurosci. 9: 1943–1950.

    PubMed  CAS  Google Scholar 

  • Falcon, J., Thibault, C., Martin, C., Brun-Marmillon, J., Claustrat, B., Collin, J.P. (1991) Regulation of melatonin production by catecholamines and adenosine in a photoreceptive pineal organ. An in vitro study in the pike and the trout. J. Pineal Res. 11: 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Gern, W.A., Greenhouse, S.S. (1988) Examination of in vitro melatonin secretion from superfused trout (Salmo gairdneri) pineal organs maintained under diel illumination of continuous darkness, Gen. Comp. Endocrinol. 71: 163–174.

    Google Scholar 

  • Green, C.B., Besharse, J.C. (1996a) Use of a high stringency differential display screen for identification of retinal mRNAs that are regulated by a circadian clock. Mol. Brain Res. 37: 157–165.

    Google Scholar 

  • Green, C.B., Besharse, J.C. (1996b) Identification of a novel vertebrate circadian clock-regulated gene encoding the protein nocturnin. Proc. Natl. Acad. Sci. USA 93: 14884–1488.

    Article  PubMed  CAS  Google Scholar 

  • Green, C.B., Cahill, G.M., Besharse, J.C. (1995) Regulation of tryptophan hydroxylase expression by a retinal circadian oscillator in vitro. Brain Res. 677: 283–290.

    Article  PubMed  CAS  Google Scholar 

  • Green, C.B., Liang, M.Y., Steenhard, B.M., Besharse, J.C. (1999) Ontogeny of circadian and light regulation of melatonin release in Xenopus laevis embryos. Dev. Brain Res. 117: 109–116.

    Google Scholar 

  • Harada, Y., Goto, M., Ebihara, S., Fujisawa, H., Kasegawa, k, Oishi, T. (1998) Circadian locomotor activity rhythms in the African clawed frog, Xenopus laevis: The role of the eye and the hypothalamus. Biol. Rhythm Res. 29: 30–48.

    Google Scholar 

  • Hasegawa, M., Cahill, G.M. (1999a) A role for cyclic AMP in entrainment of the circadian oscillator in Xenopus retinal photoreceptors by dopamine but not by light. J. Neurochem. 72: 1812–1820.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, M., Cahill, G.M. (1999b) Modulation of rhythmic melatonin synthesis in Xenopus retinal photoreceptors by cyclic AMP. Brain Res. 824: 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Hurd, M.W., Debruyne, J., Straume, M., Cahill, G.M. (1998) Circadian rhythms of locomotor activity in zebrafish. Physiol. Behay. 65: 465–472.

    Google Scholar 

  • Holmqvist, B.I., Östholm, T., Ekström, P. (1992) Retinohypothalamic projections and the suprachiasmatic nucleus of the teleost brain. In Ali, M.A. (ed.) Rhythms in Fishes, Plenum Press, New York, pp. 293–318.

    Chapter  Google Scholar 

  • Iigo, M., Tabata, M. (1996) Circadian rhythms of locomotor activity in the goldfish Carassius auratus. Physiol. Behay. 60: 775–781.

    CAS  Google Scholar 

  • Iigo, M., Kezuka, H., Aida, K., Hanyu, I. (1991) Circadian rhythms of melatonin secretion from superfused goldfish (Carassius auratus) pineal glands in vitro. Gen. Comp. Endocrinol. 83: 152–158.

    Google Scholar 

  • Jimenez, A.J., Fernandez-Llebrez, P., Perez-Figares, J.M. (1995) Central projections from the goldfish pineal organ traced by HRP-immunocytochemistry. Histol Histopathol. 10: 847–852.

    PubMed  CAS  Google Scholar 

  • Kavaliers, M. (1978) Seasonal changes in the circadian period of the lake chub, Couesius plumbeus. Can. J. Zool. 56: 2591–2596.

    Article  Google Scholar 

  • Kavaliers, M. (1979) Pineal involvement in the control of circadian rhythmicity in the lake chub, Couesius plumbeus. J. Exp. Zool. 209: 33–40.

    Google Scholar 

  • Kavaliers, M. (1980) Circadian locomotor activity rhythms of the burbot, Lota iota: Seasonal differences in period length and the effect of pinealectomy. J. Comp. Physiol. 136: 215–218.

    Google Scholar 

  • Kavaliers, M., Ralph, C.L. (1980) Pineal involvement in the control of behavioral thermoregulation of the white sucker, Catostomus commersoni. J. Exp. Zool. 212: 301–303.

    Google Scholar 

  • Kezuka, H., Aida, K., Hanyu, I. (1989) Melatonin secretion from goldfish pineal gland in organ culture. Gen. Comp. Endocrinol. 75: 217–221.

    Google Scholar 

  • Knox, B.E., Schlueter, C., Sanger, B.M., Green, C.B., Besharse, J.C. (1998) Transgene expression in Xenopus rods. FEBS Lett. 423: 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Korf, H.W., Schomerus, C., Stehle, J.H. (1998) The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv. Anat. Embryol. Cell Biol. 146: 1–100.

    Chapter  Google Scholar 

  • Kwok, C., Korn, R.M., Davis, M.E., Burt, D.W., Critcher, R., McCarthy L, Paw, B.H., Zon, L.I., Goodfellow, P.N., Schmitt, K. (1998) Characterization of whole genome radiation hybrid mapping resources for non-mammalian vertebrates. Nucleic Acids Res. 26: 3562–3566.

    Article  PubMed  CAS  Google Scholar 

  • Li, L. Dowling, J.E. (1998) Zebrafish visual sensitivity is regulated by a circadian clock. Visual Neurosci. 15: 851–857.

    Google Scholar 

  • Max, M., Menaker, M. (1992) Regulation of melatonin production by light, darkness, and temperature in the trout pineal. J. Comp. Physiol. A 170: 479–489.

    Google Scholar 

  • Morita, Y., Tabata, M., Uchida, K., Samejima, M. (1992) Pineal-dependent locomotor activity of lamprey, Lampetra japonica, measured in relation to LD cycle and circadian rhythmicity. J. Comp. Physiol. A 171: 555–562.

    Google Scholar 

  • Ooka-Souda, S., Kadota, T., Kabasawa, H. (1993) The preoptic nucleus: the probable location of the circadian pacemaker of the hagfish, Eptatretus burgeri. Neurosci. Lett. 164: 33–36.

    Google Scholar 

  • Postlethwait, J.H., Yan Y-L, Gates, M.A., Home, S., Amores, A., Brownlie, A., Donovan, A., Egan, E.S., Force, A., Gong, Z., Goutel, C., Fritz, A., Kelsh, R., Knapik, E., Liao, E., Paw, B., Ransom, D., Singer, A., Thomson, M., Abduljabbar, T.S., Yelick, P., Beier, D., Joly J-S, Larhammar, D., Rosa, F., Westerfield, M., Zon, L.I., Johnson, S.L., Talbot, W.S. (1998) Vertebrate genome evolution and the zebrafish gene map. Nat. Genet. 18: 345–349.

    Google Scholar 

  • Samejima, M., Tamotsu, S., Uchida, K., Moriguchi, Y., Morita, Y. (1997) Melatonin excretion rhythms in the cultured pineal organ of the lamprey, Lampetra japonica. Biol. Signals 6: 241–246.

    Google Scholar 

  • Sanchez-Vazquez, F.J., Madrid, J.A., Zamora, S., Iigo, M., Tabata, M. (1996) Demand feeding and locomotor circadian rhythms in the goldfish, Carassius auratus: dual and independent phasing. Physiol. Behay. 60: 665–74.

    Google Scholar 

  • Shimoda, N., Knapik, E.W., Ziniti, J., Sim, C., Yamada, E., Kaplan, S., Jackson, D., de Sauvage, F., Jacob, H., Fishman, M.C. (1999) Zebrafish genetic map with 2000 microsatellite markers. Genomics 58: 219–232.

    Article  PubMed  CAS  Google Scholar 

  • Tabata, M., Minh-Nyo, M., Oguri, M. (1988) Involvement of retinal and extraretinal photoreceptors in the mediation of nocturnal locomotor activity rhythms in the catfish, Silurus asotus. Exp. Biol. 47: 219–225.

    Google Scholar 

  • Valenciano, A.I., Alonso-Gomez, A.L., Iuvone, P.M. (1999) Diurnal rhythms of tryptophan hydroxylase activity in Xenopus laevis retina: opposing phases in photoreceptors and inner retinal neurons. Neuroreport. 10: 2131–5.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Mangel, S.C. (1996) A circadian clock regulates rod and cone input to fish retinal cone horizontal cells. Proc. Natl. Acad. Sci. USA 93: 4655–4660.

    Google Scholar 

  • Weigle, C., Wicht, H., Korf, H.W. (1996) A possible homologue of the suprachiasmatic nucleus in the hypothalamus of lampreys (Lampetra fluviatilis L.). Neurosci. Lett. 217: 173–176.

    Google Scholar 

  • Whitmore, D., Foulkes, N.S., Sassone-Corsi, P. (2000) Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404: 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Whitmore, D., Foulkes, N.S., Strahle, U., Sassone-Corsi, P. (1998) Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nature Neurosci. 1: 701–707.

    Article  PubMed  CAS  Google Scholar 

  • Ydfiez, J., Anadon, R., Holmqvist, B.I., Ekstrom, P. (1993) Neural projections of the pineal organ in the larval lamprey (Petromyzon marinus L.) revealed by indocarbocyanine dye tracing, Neurosci. Lett. 164: 213–216.

    Google Scholar 

  • Young, M.W. (1999) Molecular control of circadian behavioral rhythms. Recent Prog. Horm. Res. 54: 87–94.

    Google Scholar 

  • Zachmann, A., Falcon, J., Knijff, S.C.M., Bolliet, V., Ali, M,A. (1992) Effects of photoperiod and temperature on rhythmic melatonin secretion from the pineal organ of the white sucker (Catostomus commersoni) in vitro. Gen. Comp. Endocrinol. 86: 26–33.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, H., LaRue, S., Whiteley, A., Steeves, T.D., Takahashi, J.S., Green, C.B. (2000) The Xenopus clock gene is constitutively expressed in retinal photoreceptors. Mol. Brain Res. 75: 303–308.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cahill, G.M. (2002). Circadian Organization in Fish and Amphibians. In: Kumar, V. (eds) Biological Rhythms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06085-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06085-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06087-2

  • Online ISBN: 978-3-662-06085-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics