The Imaging of a Magnetic Source

  • H. Kado
  • H. Ogata
  • Y. Haruta
  • M. Higuchi
  • M. Shimogawara
  • J. Kawai
  • Y. Adachi
  • C. Bertrand
  • G. Uehara
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


The purpose of this section is to provide information about magnetic field measurement, especially of very weak magnetic signals, and about the analysis of the source of the measured signal. It is not our intention to provide full information on magneticism and the related area, which is too wide and beyond our capability. To realize the purpose, limited discussions will be provided on topics from basic principles of measurement to several examples of the state-of-the-art issue. The discussions will include the definition of a magnetic field, an example of a magnetic field source, the concept of measurement of the field, practical technology and measuring devices and an example of source analysis. Most of those items are also described in the following subsections in more detail. Some of the details are basic knowledge, while others have to do with contemporary studies on applications of the technology. We have tried to arrange the description as self-contained as possible and to keep reference citations to the necessary minimum.


Liquid Helium Squid Magnetometer Magnetic Source Current Dipole Current Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Barone: Superconducting Quantum Interference Devices (World Scientific, 1992)Google Scholar
  2. 2.
    A. Barone and G. Paterno: Physics and Applications of the Josephson Effect (John Wiley & Sons, 1982 )Google Scholar
  3. 3.
    J.C. Gallop: SQUIDs, the Josephson Effects and Superconducting Electronics (Adam Hilger, 1991 )Google Scholar
  4. 4.
    J. Clarke: Proc. IEEE 77, 1208 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    M.B. Ketchen: IEEE Trans. Mag. 17, 387 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    C.D. Tesche, J. Clarke: J. Low. Temp. Phys. 29, 301 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    C.T. Rogers, P.A. Buhrman: IEEE Trans. Mag. 29, 453 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    F. Wellstood, C. Urbina, J. Clarke: Appl. Phys. Lett. 50, 772 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    V. Foglietti, W.J. Gallagher, M.B. Ketchen, A.W. Kleinsasser, R.H. Koch, S.I. Raider, R.L. Sandstorm: Appl. Phys. Lett. 40, 1343 (1986)Google Scholar
  10. 10.
    K. Goto, N. Fujimaki, T. Imamura, S. Hasuo: SCE91–22 43, (1991)Google Scholar
  11. 11.
    J.W. McWane, J.E. Neighbor, R.S. Newbower: Rev. Sci. Instrum. 37, 1602 (1966)ADSCrossRefGoogle Scholar
  12. 12.
    D. Drung, R. Cantor, M. Peters, H.J. Scheer, H. Koch: Appl. Phys. Lett. 57, 406 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    T. Ryhanen, R. Cantor, D. Drung, H. Koch: Appl. Phys. Lett. 59, 228 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Takada, K. Kazami, G. Uehara, H. Kado: Proceedings of SPIE’94 2160, 195 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Takada, G. Uehara, N. Matsuda, H. Kado: Jpn. J. Appl. Phys. 33, L1595 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    G.L. Romani, S.J. Williamson, L. Kaufman: Rev. Sci. Instrum. 53, 1815 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    G. Kajiwara, K. Harakawa, H. Ogata, H. Kado: IEEE Trans. Mag. 32, 2582 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    S.J. Williamson, L. Kaufman: IEEE Trans. Mag. MAG-19, 835–844 (1983)Google Scholar
  19. 19.
    J.P. Wikswo: “Biomagnetic sources and their models”, in: Advances in Biomagnetism, ed. by S. J. Williamson, M. Hoke, G. Stroink, and M. Kotani, pp. 1–18 ( Plenum Press, New York, 1990 )Google Scholar
  20. 20.
    J.P. Wikswo: IEEE Trans. Appl. Supercond. 5, 74 (1995)CrossRefGoogle Scholar
  21. 21.
    J. Sarvas: Phys. Med. Biol. 32, 11 (1987)CrossRefGoogle Scholar
  22. 22.
    D.B. Geselowitz: IEEE Trans. Mag. MAG-6, 346 (1970)Google Scholar
  23. 23.
    H. von Helmholtz: Ann. Phys. Chem. 89, 211–233 and 353–377 (1853)Google Scholar
  24. 24.
    A.A. Ioannides, J.P.R. Bolton, C.J.S. Clarke: Inverse Probl. 6, 523 (1990)ADSMATHCrossRefGoogle Scholar
  25. 25.
    J.Z. Wang, S.J. Williamson, L. Kaufman: IEEE Trans. Biomed. Eng. 39, 665 (1992)CrossRefGoogle Scholar
  26. 26.
    A.M. Dale, M.I. Sereno: J. Cognitive Neurosci. 5: 2, 162 (1993)CrossRefGoogle Scholar
  27. 27.
    M. Hamalainen, R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa: Rev. Mod. Phys. 65, 413 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    R.D. Pascual-Marqui, C.M. Michel, D. Lehmann: Int. J. Psychophysiol. 18, 49 (1994)CrossRefGoogle Scholar
  29. 29.
    M.S. Hamalainen, R.J. Ilmoniemi: Med. Biol. Eng. Comput. 32, 35 (1994)CrossRefGoogle Scholar
  30. 30.
    D. Brenner, J. Lipton, L. Kaufman, S.J. Williamson: Science 199, 81 (1978)ADSCrossRefGoogle Scholar
  31. 31.
    S.J. Williamson, L. Kaufman: J. Magn. Mat. 22, 129 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    M. Scherg: “Fundamentals of dipole source potential analysis”, in: Advances in Audiology–Auditory Evoked Magnetic Fields and Electric Potentials, ed. by F. Grandori, M. Hoke, and G.L. Romani, pp. 40–69 ( Karger, Basel, 1990 )Google Scholar
  33. 33.
    M.S. Hamalainen: Brain Topogr. 7, 283 (1995)CrossRefGoogle Scholar
  34. 34.
    R. Hari, K. Reinikainen, E. Kaukorenta, M. Hamalainen, R. Ilmoniemi, A. Pentinnen, J. Salminen, D. Teszner: Electroencephalogr. Clin. Neurophysiol. 57, 254 (1984)CrossRefGoogle Scholar
  35. 35.
    M. Scherg, R. Hari, M.S. Hamalainen: “Frequency-specific sources of the auditory N19–P30-P50 response detected by a multiple source analysis of evoked magnetic fields and potentials”, in: Advances in Biomagnetism, ed. by S.J. Williamson, M. Hoke, G. Stroink, and M. Kotani, pp. 97–100 ( Plenum, New York, 1989 )CrossRefGoogle Scholar
  36. 36.
    M. Scherg, D. von Cramon: Elec. Clin. Neurol. 62, 32 (1985)Google Scholar
  37. 37.
    J.C. Mosher, P.S. Lewis, R.M. Leahy: IEEE Trans. Biomed. Eng. 39, 541 (1992)CrossRefGoogle Scholar
  38. 38.
    S. Baillet, L. Garnero: IEEE Trans. Biomed. Eng. 44, 374 (1997)CrossRefGoogle Scholar
  39. 39.
    J.C. Mosher, R.M. Leahy: IEEE Trans. Biomed. Eng. 45, 1342 (1998)CrossRefGoogle Scholar
  40. 40.
    K. Uutela, M. Hamalainen, R. Salmelin: IEEE Trans. Biomed. Eng. 45, 716 (1998)CrossRefGoogle Scholar
  41. 41.
    D.M. Schmidt, J.S. George, C.C. Wood: Hum. Brain Mapp. 7, 195 (1999)CrossRefGoogle Scholar
  42. 42.
    C.C. Wood, J.S. George, P.S. Lewis, D.M. Ranken, L. Heller: Society for Neuroscience, Abstracts 16, 1241 (1990)Google Scholar
  43. 43.
    M. Scherg, P. Berg: Brain Topogr. 4, 143 (1991)CrossRefGoogle Scholar
  44. 44.
    J.S. George, C.J. Aine, J.C. Mosher, D.M. Schmidt, D.M. Ranken, H.A. Schlitt, C.C. Wood, J.D. Lewine, J.A. Sanders, J.W. Belliveau: J. Clin. Neurophysiol. 12, 406 (1995)CrossRefGoogle Scholar
  45. 45.
    D.M. Schmidt, J.S. George, D.M. Ranken, C.C. Wood: “Spatio-temporal Bayesian inference for MEG/EEG”, in: Biomag 2000, 12th International Conference on Biomagnetism at Helsinki, Finland, August 13–17, 2000, p. 7Google Scholar
  46. 46.
    C. Bertrand, M. Ohmi, R. Suzuki, Y. Haruta, M. Ochiai, H. Kado: “Resolution of the MEG inverse problem by Markov Chain Monte Carlo methods: Algorithm comparison and 3-dimensional visualization tools”, in: Biomag 2000, 12th International Conference on Biomagnetism at Helsinki, Finland, August 13–17, 2000, p. 171Google Scholar
  47. 47.
    C. Bertrand, Y. Hamada, H. Kado: “MRI prior computation and Parallel Tempering algorithm for a probabilistic resolution of the MEG/EEG inverse problem”, Brain Topgr. 4, no. 1, 2001Google Scholar
  48. 48.
    C. Bertrand, M. Ohmi, R. Suzuki, H. Kado: “Resolution of the MEG inverse problem by Markov Chain Monte Carlo methods: Parallel tempering and reversible jump algorithms”, in: Proceedings of the Second Annual Meeting of the Japan Human Brain Mapping Society, Tokyo, Japan, 2000, p. 109.Google Scholar
  49. 49.
    C. Bertrand, M. Ohmi, R. Suzuki, H. Kado: “A probabilistic solution to the MEG inverse problem via MCMC methods: The reversible jump and parallel tempering algorithms”, to appear in the IEEE Trans. Biomed. Eng.Google Scholar
  50. 50.
    J.C. Mosher, R.M. Leahy, P.S. Lewis: IEEE Trans. Biomed. Eng. 46, 245 (1999)CrossRefGoogle Scholar
  51. 51.
    C.J. Geyer: “Markov chain Monte Carlo maximum likelihood”, in: Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, Fairfax: Interface Foundation, ed. by E. M. Keramigas (1991), pp. 156–163Google Scholar
  52. 52.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller: J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  53. 53.
    P.J. Green: Biometrika 82, 711 (1995)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    J. Gerson, V.A. Vardenas, G. Fein: Electroenceph. Clin. Neurophysiol. 92, 161 (1994)Google Scholar
  55. 55.
    H. Haneishi, N. Ohyama, K. Sekihara, T. Honda: IEEE Trans. Biomed. Eng. 41, 1004 (1994)CrossRefGoogle Scholar
  56. 56.
    C. Bertrand, Y. Hamada, H. Kado: “Probabilistic current mapping of somatosensory fields”, in ISBET2001, 12th World Congress of the International Society for Brain Electromagnetic Topography, pp. 1–4Google Scholar
  57. 57.
    T. Katila, P. Karp: “Magnetocardiology: Morphology and multipole presentations”, in: Biomagnetism: An Interdisciplinary Approach, ed. by S.J. Williamson, G.L. Onmani, L. Kaufman, and I. Modena ( Plenum Press, New York and London, 1983 )Google Scholar
  58. 58.
    S. Kirkpatrick, C.D. Gelatt Jr. M.P. Vecchi: “Optimization by simulated annealing”, Science 220, 671 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  59. 59.
    R.S. Gonnelli, M. Sicuro: “Use of the current multipole model for the cardiac source localization in normal subjects”, in: Biomagnetism’87, pp. 314–317 (1987)Google Scholar
  60. 60.
    A. Tarantola: Inverse Problem Theory ( Elsevier, New York, 1987 )MATHGoogle Scholar
  61. 61.
    C. Bertrand, H. Kado, Y. Adachi: “A 3D visualization software for biomedical data and images: An application to magnetic resonance image and magnetoencephalography”, in: Proceedings of the Third International Conference on Human and Computer, University of Aizu, Tsuruga, Japan, September 6–9, 2000, pp. 127–132.Google Scholar
  62. 62.
    C. Bertrand, H. Kado, Y. Adachi: J. Three Dimension. Images, 14–4, 94 (2000)Google Scholar
  63. 63.
    B. Silverman: Density Estimation for Statistics and Data Analysis ( Chapman and Hall, London, 1993 )Google Scholar
  64. 64.
    J. Serra: Image Analysis and Mathematical Morphology ( Academic Press, London, 1982 )MATHGoogle Scholar
  65. 65.
    W.E. Lorensen, H.E. Cline: Comput. Graph. 21, 163 (1987)CrossRefGoogle Scholar
  66. 66.
    C. Montani, R. Scateni, R. Scopigno: Visual Comp. 10, 353 (1994)CrossRefGoogle Scholar
  67. 67.
    H.J.M. ter Brake, F.H. Fleuren, J.A. Ulfman, J. Flokstra: Cryogenics 26, 667 (1986)CrossRefGoogle Scholar
  68. 68.
    G. Uehara, N. Matsuda, K. Kazami, Y. Takada, H. Kado: “Wafer scale integration of drung type SQUIDs”, in: 4th International Superconductive Electronics Conference Proceedings, Boulder, CO, 1993, pp. 184–185Google Scholar
  69. 69.
    D. Drung, R. Cantor, M. Peters, T. Ryhanen, H. Koch: IEEE Trans. Magn. 27, 3001 (1991)ADSCrossRefGoogle Scholar
  70. 70.
    J. Vrba et al.: “151-channel hole-cortex MEG system for seated or supine positions”, in: Proceedings of 11th International Conference on Biomagnetism, Sendai, Japan, 1998, P-I-30, p. 60Google Scholar
  71. 71.
    D.S. Buchanan, R.T. Johnson, K.C. Squire: “Performance of whole head bio-magnetic sensor using magnetometer signal coils”, in: Proceedings of 11th International Conference on Biomagnetism, Sendai, Japan, 1998, P-I-5, p. 57Google Scholar
  72. 72.
    K. Sata et al.: “A helmet-shaped MEG measurement system cooled by a GM/JT cryocooler”, in: Proceedings of 11th International Conference on Bio-magnetism, Sendai, Japan, 1998, P-I-21, p. 65Google Scholar
  73. 73.
    J. Polich, S.E. Eischen, G.E. Collins: Electroencephalogr. Clin. Neurophys. 92, 253 (1994)Google Scholar
  74. 74.
    H. Kado, M. Higuchi, M. Shimogawara, Y. Haruta, Y. Adachi, J. Kawai, H. Ogata, G. Uehara: IEEE Trans. Appl. Supercond. 9, 4057 (1999)CrossRefGoogle Scholar
  75. 75.
    J. Vrba: in: NATO ASI Series: E Applied Sciences 365, ed. by H. Weinstock, pp. 61–138 ( Kluwer Academic Publishers, Dordrecht, 2000 )Google Scholar
  76. 76.
    On the web site of the American Academy of Orthopaedic Surgeons ( Scholar
  77. 77.
    I. Hashimoto, T. Mashiko, T. Mizuta, T. Imada, K. Iwase, and H. Okazaki: Electroencephalogr. Clin. Neurophysiol. 93, 259 (1994)Google Scholar
  78. 78.
    B.M. Mackert, G. Curio, M. Burghoff, P. Marx: Electroencephalogr. Clin. Neurophysiol. 104, 322 (1997)Google Scholar
  79. 79.
    M. Kawakatsu, K. Kobayashi, A. Fujimoto, H. Ishibashi, T. Ishikura, Y. Uchikawa, M. Kotani: J. J.n. Biomag. Bioelect. Soc. 12, 3 (1999)Google Scholar
  80. 80.
    M. Higuchi, K. Chinone, N. Ishikawa, H. Kado, N. Kasai, M. Nakanishi, M. Koyanagi, Y. Ishibashi: in: Advances in Biomagnetism, pp. 701–704 ( Plenum Press, New York, 1989 )Google Scholar
  81. 81.
    J.P. Wikswo: IEEE Trans. Appl. Supercond. 5, 74 (1995)CrossRefGoogle Scholar
  82. 82.
    M. Higuchi, M. Shimogawara, Y. Haruta, G. Uehara, J. Kawai, H. Ogata, H. Kado: Appl. Supercond. 5, Nos 7–12, 441 (1998)Google Scholar
  83. 83.
    J. Clarke, T.D. Gamble, W.M. Goubau, R.H. Koch, R.F. Miracky: Geophys. Prospect. 31, 149 (1983)ADSCrossRefGoogle Scholar
  84. 84.
    E.A. Nichols, H.F. Morrison, J. Clarke: J. Geophys. Res. 93, 13743 (1988)ADSCrossRefGoogle Scholar
  85. 85.
    W.M. Goubau: “Geophysical applications of SQUIDs”, in: Proceedings of SQUID80, pp. 603–613 (Walter de Gruyter & Co., Berlin New York)Google Scholar
  86. 86.
    P. Varotsos, K. Alexopoulos: Tectonophys. 110, 73 (1984)CrossRefGoogle Scholar
  87. 87.
    Y. Tanaka: J. Volcanol. Geotherm. Res. 56, 319 (1993)ADSCrossRefGoogle Scholar
  88. 88.
    D.J. Adelerhof, J. Kawai, G. Uehara, H. Kado: Appl. Phys. Lett. 65, 2606 (1994)ADSCrossRefGoogle Scholar
  89. 89.
    J. Kawai: Relaxation Oscillation SQUIDs (ROSs) Based on Nb/AlOx/Nb Josephson Tunnel Junctions, Thesis (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • H. Kado
  • H. Ogata
  • Y. Haruta
  • M. Higuchi
  • M. Shimogawara
  • J. Kawai
  • Y. Adachi
  • C. Bertrand
  • G. Uehara

There are no affiliations available

Personalised recommendations