Advertisement

Therapeutic Effects of Electromagnetic Fields

  • Walter H. Chang
  • Kyle T. Chang
  • Jimmy Li
Chapter

Abstract

Biological studies suggest that extremely low frequency-electromagnetic fields (ELF-EMF) operate by modulating normal control mechanisms available to the cell. There is an abundance of experimental and clinical data which indicate that exposure to exogenous electromagnetic fields of surprisingly low levels can have a profound effect on a large variety of biological systems, including the abovementioned bone disorders such as bone fracture and osteoporosis. The data obtained from in vitro systems suggest that the current biological activity of a cell (e.g., division or differentiation) can be modulated. As the number of experiments on EMF effects increases it is becoming increasingly evident, as will be shown below, that more cursory consideration must be given. Many EMF experiments employ transformed rather than normal cells. One must question whether cells that are abnormal represent the best model systems for elucidating EMF interaction mechanisms. A better approach might be to use simpler, well-studied normal cells such as yeast or bacteria. The obvious advantage of employing these organisms to elucidate the transduction pathway(s) is that they are well characterized and, more importantly, an endless array of mutants is available to the investigator. Historically, the use of mutants has proved to be an essential tool for elucidation of cellular pathways. The approved therapeutic effects of weak EMF result from devices which were designed to modulate (not initiate) tissue growth and repair. It is quite clear from all of the dosimetry data available that the amount of energy deposited in the cell or tissue target is negligible compared to the energy required by the affected biochemical pathway. Thus, the capability of weak EMF to have a bioeffect appears to reside in the informational content of the waveform. This may provide part of the explanation for the sensitivity of living systems to weak electromagnetic and magnetic fields. Finally, the site(s) and mechanisms of interaction between ELF-EMF and biological systems remain to be elaborated. Although there are numerous studies and hypotheses that suggest the membrane represents the primary site of interaction, there are also several different studies showing that in vitro systems, including cell-free systems, are responsive to EMF. The debate about potential hazards or therapeutic value of weak electromagnetic fields will continue until the mechanism has been clarified. The problem of how weak fields perturb cell function will be understood when the techniques of molecular biology, genetics, biochemistry, and biophysics are directed together to answer the question.

Keywords

Electromagnetic Field Pulse Electromagnetic Field Combine Magnetic Field Osteoblastlike Cell Weak Electromagnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarden EM. Burger EH. Nijweide PJ. Function of osteocytes in bone. Journal of Cellular Biochemistry. 55 (3): 287–99, 1994.CrossRefGoogle Scholar
  2. 2.
    Adey WR. Electromagnetic fields, cell membrane amplication, and cancer promotion. In: Extremely Low Frequency Electromagnetic Fields: The Question of Cancer. Wilson BW. Stevens RG. Anderson LE. eds. p. 211–49, Battelle Press, Columbus, Ohio, 1990.Google Scholar
  3. 3.
    Adey WR. Bawin SM. Lawrence AF. Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex. Bioelectromagnetics. 3 (3): 295–307, 1982.CrossRefGoogle Scholar
  4. 4.
    Adey WR. Sheppard A. Cell surface ionic phenomena in transmembrane signaling to intracellular enzyme systems. In: Mechanistic Approaches to Interactions of Electromagnetic Fields with Living Systems. Blank M. Find E. eds. p. 365–87, Plenum Press, New York, 1987.Google Scholar
  5. 5.
    Amagai Y. Kasai S. A voltage-dependent calcium current in mouse MC3T3E1 osteogenic cells. Japanese Journal of Physiology. 39 (5): 773–7, 1989.CrossRefGoogle Scholar
  6. 6.
    Anonymous. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. American Journal of Medicine. 94 (6): 646–50, 1993.CrossRefGoogle Scholar
  7. 7.
    Astumian RD. Chock PB. Tsong TY. Chen YD. Westerhoff HV. Can free energy be transduced from electric noise?. Proceedings of the National Academy of Sciences of the United States of America. 84 (2): 434–8, 1987.CrossRefGoogle Scholar
  8. 8.
    Auer JA. Burch GE. Hall P. Review of pulsing electromagnetic field therapy and its possible application to horses. Equine Veterinary Journal. 15 (4): 354–60, 1983.CrossRefGoogle Scholar
  9. 9.
    Balcavage WX. Alvager T. Swez J. Goff CW. Fox MT. Abdullyava S. King MW. A mechanism for action of extremely low frequency electromagnetic fields on biological systems. Biochemical & Biophysical Research Communications. 222 (2): 374–8, 1996.CrossRefGoogle Scholar
  10. 10.
    Barth LG. Barth U. The sodium dependence of embryonic induction. Developmental Biology. 20 (3): 236–62, 1969.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Barth U. Barth LG. Effect of the potassium ion on induction of notochord from gastrula ectoderm of Rana pipiens. Biological Bulletin. 146 (3): 313–25, 1974a.CrossRefGoogle Scholar
  12. 12.
    Barth LG. Barth U. Ionic regulation of embryonic induction and cell differentiation in Rana pipiens. Developmental Biology. 39 (1): 1–22, 1974b.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bassett CAL. Biologic significance of piezoelectricity. Calcified Tissue Research. 1 (4): 252–72, 1968.Google Scholar
  14. 14.
    Bassett CAL. Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). CRC Critical Reviews in Biomedical Engineering. 17 (5): 451–529, 1989.Google Scholar
  15. 15.
    Bassett CAL. Chokshi HR. Hernandez E. Pawluk RJ. Strop M. The effect of pulsing electromagnetic fields on cellular calcium and calcification of non-unions. In: Electrical Properties of Bone and Cartilage: Experimental Effects and Clinical Applications. Brighton CT. Black J. Pollack SR. eds. p. 427–41, Grune & Stratton, New York, 1979a.Google Scholar
  16. 16.
    Bassett CAL. Herrmann I. The effect of electrostatic fields on macromolecular synthesis by fibroblasts in vitro. Journal of Cell Biology. 39: 92, 1968.Google Scholar
  17. 17.
    Bassett CAL. Pawluk RJ. Noninvasive methods for stimulating osteogenesis. Journal of Biomedical Materials Research. 9 (3): 371–4, 1975.CrossRefGoogle Scholar
  18. 18.
    Bassett CAL. Pawluk RJ. Becker RO. Effects of electric currents on bone formation in vivo. Nature. 204: 652, 1964.CrossRefGoogle Scholar
  19. 19.
    Bassett CAL. Schink-Ascani M. Long-term pulsed electromagnetic field (PEMF) results in congenital pseudarthrosis. Calcified Tissue International. 49 (3): 216–20, 1991.CrossRefGoogle Scholar
  20. 20.
    Bassett CAL. Schink M. Mitchell SN. Pulsing electromagnetic field effects in avascular necrosis-A preliminary clinical report. Trans Bioelectr Growth Repair Soc. 1: 38, 1981.Google Scholar
  21. 21.
    Bassett LS. Tzitzikalakis G. Pawluk RJ. Bassett CAL. Prevention of disuse osteoporosis in the rats by means of pulsing electromagnetic fields. In: Electrical Properties of Bone and Cartilage: Experimental Effects and Clinical Applications. Brighton CT. Black J. Pollack SR. eds. p. 311–31, Grune & Stratton, New York, 1979b.Google Scholar
  22. Bawin SM. Adey WR. Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proceedings of the National Academy of Sciences of the United States of America. 73(6):19992003, 1976.Google Scholar
  23. 23.
    Bawin SM. Adey WR. Sabbot IM. Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. Proceedings of the National Academy of Sciences of the United States of America. 75 (12): 6314–8, 1978.CrossRefGoogle Scholar
  24. 24.
    Bawin SM. Kaczmarek LK. Adey WR. Effects of modulated VHF fields on the central nervous system. Annals of the New York Academy of Sciences. 247: 74–81, 1975.CrossRefGoogle Scholar
  25. 25.
    Beckor RO. Pilla AA. In “Modern Aspects of Electrochemistry”. Bockris JOM. ed. vol. 10, Plenum Press, New York, 1975.Google Scholar
  26. 26.
    Bianco B. Chiabrera A. From the Langevin-Lorentz to Zeeman model of electromagnetic effect on ligand-receptor binding. Bioelectrochemistry and Bioenergetics. 28: 355–65, 1992.CrossRefGoogle Scholar
  27. 27.
    Bigliani LU. Rosenwasser MP. Caulo N. Schink MM. Bassett CA. The use of pulsing electromagnetic fields to achieve arthrodesis of the knee following failed total knee arthroplasty. A preliminary report. Journal of Bone & Joint Surgery.–American Volume. 65 (4): 480–5, 1983.Google Scholar
  28. 28.
    Binder A. Parr G. Hazleman B. Fitton-Jackson S. Pulsed electromagnetic field therapy of persistent rotator cuff tendinitis. A double-blind controlled assessment. Lancet. 1 (8379): 695–8, 1984.CrossRefGoogle Scholar
  29. 29.
    Black J. Electrical stimulation. Greenwood Press. Westport. CT., 1987.Google Scholar
  30. 30.
    Blackman CF. Benane SG. Kinney LS. Joines WT. House DE. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiation Research. 92 (3): 510–20, 1982.CrossRefGoogle Scholar
  31. 31.
    Blackman CF. Benane SG. Rabinowitz JR. House DE. Joines WT. A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics. 6 (4): 327–37, 1985.CrossRefGoogle Scholar
  32. 32.
    Blackman CF. Kinney LS. House DE. Joines WT. Multiple power-density windows and their possible origin. Bioelectromagnetics. 10 (2): 115–28, 1989.CrossRefGoogle Scholar
  33. 33.
    Blank M. Recent developments in the theory of ion flow across membranes under imposed electric fields. In: Modern Bioelectricity. Marino AA. ed. p. 34564, Marcel Dekker, New York, 1988.Google Scholar
  34. 34.
    Blank M. Na,K-ATPase function in alternating electric fields. FASEB Journal. 6 (7): 2434–8, 1992.Google Scholar
  35. 35.
    Blank M. Soo L. Temperature dependence of electric field effects on the Na,K-ATPase. Bioelectrochemistry and Bioenergetics. 28: 291–99, 1992.CrossRefGoogle Scholar
  36. 36.
    Blank M. Soo L. Papstein V. Effects of low frequency magnetic fields on Na,K-ATPase activity. Bioelectrochemistry and Bioenergetics. 38: 267–73, 1995.CrossRefGoogle Scholar
  37. 37.
    Bolander ME. Balian G. The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins and a comparison with autologous grafts. Journal of Bone & Joint Surgery–American Volume. 68 (8): 1264–74, 1986.Google Scholar
  38. 38.
    Boonstra J. Skaper SD. Varon S. Regulation of Na+,K+ pump activity by nerve growth factor in chick embryo dorsal root ganglion cells. Journal of Cellular Physiology. 113 (1): 28–34, 1982.CrossRefGoogle Scholar
  39. 39.
    Boonstra J. Van der Saag PT. Moolenaar WH. de Laat SW. Rapid effects of nerve growth factor on the Na+, K+-pump in rat pheochromocytoma cells. Experimental Cell Research. 131 (2): 452–5, 1981.CrossRefGoogle Scholar
  40. 40.
    Bosma MM. Hille B. Electrophysiological properties of a cell line of the gonadotrope lineage. Endocrinology. 130 (6): 3411–20, 1992.CrossRefGoogle Scholar
  41. 41.
    Bourguignon GJ. Jy W. Bourguignon LY. Electric stimulation of human fibroblasts causes an increase in Ca2+ influx and the exposure of additional insulin receptors. Journal of Cellular Physiology. 140 (2): 379–85, 1989.CrossRefGoogle Scholar
  42. 42.
    Boynton AL. McKechan WL. Whitfield JF. “Ions, Cell Proliferation and Cancer”. eds. Academic Press, New York, 1982.Google Scholar
  43. 43.
    Boynton AL. Whitfield JF. Isaacs RJ. Tremblay RG. Different extracellular calcium requirements for proliferation of nonneoplastic, preneoplastic, and neoplastic mouse cells. Cancer Research. 37 (8 Pt 1): 2657–61, 1977.Google Scholar
  44. 44.
    Braun KA. Lemons JD. Effects of electromagnetic fields on the recovery of circulation in mature rabbit femoral heads. Transactions of Orthopedic Research Society. 7: 313, 1982.Google Scholar
  45. 45.
    Brighton CT. Black J. Friedenberg ZB. Esterhai JL. Day U. Connolly JF. A multicenter study of the treatment of non-union with constant direct current. Journal of Bone & Joint Surgery–American Volume. 63 (1): 2–13, 1981a.Google Scholar
  46. 46.
    Brighton CT. Friedenberg ZB. Black J. Esterhai JL Jr. Mitchell JE. Montique F Jr. Electrically induced osteogenesis: relationship between charge, current density, and the amount of bone formed: introduction of a new cathode concept. Clinical Orthopaedics & Related Research. 161: 122–32, 1981b.Google Scholar
  47. 47.
    Brighton CT. Pollack SR. Treatment of recalcitrant non-union with a capacitively coupled electrical field. A preliminary report. Journal of Bone & Joint Surgery–American Volume. 67 (4): 577–85, 1985.Google Scholar
  48. Burchardt H. The biology of bone graft repair. Clinical Orthopaedics & Related Research. (174): 28–42, 1983.Google Scholar
  49. 49.
    Cadossi R. Emilia G. Ceccherelli G. Torelli G. Lymphocytes and pulsing electromagnetic fields. In: Modern Bioelectricity. Marino A. ed. p. 451, Marcel Dekker, New York, 1989.Google Scholar
  50. 50.
    Cain CD. Ph.D Thesis. University of California, Riverside, 1986.Google Scholar
  51. 51.
    Cain CD. Adey WR. Luben RA. Evidence that pulsed electromagnetic fields inhibit coupling of adenylate cyclase by parathyroid hormone in bone cells. Journal of Bone & Mineral Research. 2 (5): 437–41, 1987.CrossRefGoogle Scholar
  52. Cain CD. Luben RA. Pulsed electromagnetic field effects on PTH-stimulated camp accumulation and bone resorption in mouse calvaria. Anderson LE. Kelman BJ. Weige RJ. eds. p. 269–77, Pacific Northwest Laboratory, Wash, 1987.Google Scholar
  53. 53.
    Cairo P. Greenebaum B. Goodman E. Magnetic field exposure enhances mRNA expression of sigma 32 in E. coli. Journal of Cellular Biochemistry. 68 (1): 1–7, 1998.CrossRefGoogle Scholar
  54. 54.
    Cann CE. Genant HK. Ettinger B. Gordan GS. Spinal mineral loss in oophorectomized women. Determination by quantitative computed tomography. JAMA. 244 (18): 2056–9, 1980.CrossRefGoogle Scholar
  55. 55.
    Carson JJ. Prato FS. Drost DJ. Diesbourg LD. Dixon SJ. Time-varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells. American Journal of Physiology. 259 (4 Pt 1): C687–92, 1990.Google Scholar
  56. 56.
    Chafouleas JG. Bolton WE. Hidaka H. Boyd AE 3rd. Means AR. Calmodulin and the cell cycle: involvement in regulation of cell-cycle progression. Cell. 28 (1): 41–50, 1982.CrossRefGoogle Scholar
  57. 57.
    Chauvin F. Astumian RD. Tsong TY. Biophysical Journal 51(2):243a, 1987.Google Scholar
  58. 58.
    Chesnut CH 3d. Bone mass and exercise. American Journal of Medicine. 95(5A):34S–36S, 1993.Google Scholar
  59. 59.
    Chiabrera A. Grattarola M. Viviani R. Interaction between electromagnetic fields and cells: microelectrophoretic effect on ligands and surface receptors. Bioelectromagnetics. 5 (2): 173–91, 1984.CrossRefGoogle Scholar
  60. 60.
    Chiabrera A. Hinsenkamp M. Pilla AA. Nicolini C. In “Chromatin Structure and Function”. Nicolini C. ed. p. 811, Plenum Press, New York, 1979.CrossRefGoogle Scholar
  61. 61.
    Chiabrera A. Viviani R. Parodi G. Vernazza G. Hinsenkamp M. Pilla M. Ryaby J. Beltrame F. Grattarola M. Nicolini C. Automated absorption image cytometry of electromagnetically exposed frog erythrocytes. Cytometry. 1 (1): 42–8, 1980.CrossRefGoogle Scholar
  62. 62.
    Colacicco G. Pilla AA. Electromagnetic modulation of biological processes: influence of culture media and significance of methodology in the Ca-uptake by embryonal chick tibia in vitro. Calcified Tissue International. 36 (2): 167–74, 1984.CrossRefGoogle Scholar
  63. 63.
    Cole KS. The advance of electrical models for cells and axon. Biophysical Journal. 2: 101–19, 1962.CrossRefGoogle Scholar
  64. 64.
    Compston JE. Structural mechanisms of trabecular bone loss. In: Osteoporosis. Smith R. ed. p. 35–43, Royal College of Physicians, London, 1990.Google Scholar
  65. 65.
    Connolly J. Guse R. Lippiello L. Dehne R. Development of an osteogenic bone-marrow preparation. Journal of Bone & Joint Surgery — American Volume. 71 (5): 684–91, 1989.Google Scholar
  66. 66.
    Conti P. Gigante GE. Alesse E. Cifone MG. Fieschi C. Reale M. Angeletti PU. A role for Ca2+ in the effect of very low frequency electromagnetic field on the blastogenesis of human lymphocytes. FEBS Letters. 181 (1): 28–32, 1985.CrossRefGoogle Scholar
  67. Cruess RL. Kan K. Bassett CA. The effect of pulsing electromagnetic fields upon bone metabolism in an experimental model of disuse osteoporosis. Clinical Orthopaedics & Related Research. (173): 245–50, 1983.Google Scholar
  68. 68.
    Czech MP. Signal transmission by the insulin-like growth factors. Cell. 59 (2): 235–8, 1989.CrossRefGoogle Scholar
  69. 69.
    Devereaux MD. Hazleman BL. Thomas PP. Chronic lateral humeral epicondylitis-a double-blind controlled assessment of pulsed electromagnetic field therapy. Clinical & Experimental Rheumatology. 3 (4): 333–6, 1985.Google Scholar
  70. 70.
    Dohlman HG. Caron MG. Lefkowitz RJ. A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry. 26 (10): 2657–64, 1987.CrossRefGoogle Scholar
  71. 71.
    Doida Y. Miller MW. Brayman M. Carstensen EL. A test of the hypothesis that ELF magnetic fields affect calcium uptake in rat thymocytes in vitro. Biochemical & Biophysical Research Communications. 227 (3): 834–8, 1996.CrossRefGoogle Scholar
  72. 72.
    Drago GP. Marchesi M. Ridella S. The frequency dependence of an analytical model of an electrically stimulated biological structure. Bioelectromagnetics. 5 (1): 47–62, 1984.CrossRefGoogle Scholar
  73. 73.
    Einhorn TA. Enhancement of fracture-healing. Journal of Bone & Joint Surgery–American Volume. 77 (6): 940–56, 1995.Google Scholar
  74. 74.
    Einhorn TA. Lane JM. Burstein AH. Kopman CR. Vigorita VJ. The healing of segmental bone defects induced by demineralized bone matrix. A radiographic and biomechanical study. Journal of Bone & Joint Surgery–American Volume. 66 (2): 274–9, 1984.Google Scholar
  75. 75.
    El Messiery MA. Hastings GW. Rakowski S. Ferroelectricity of dry cortical bone. Journal of Biomedical Engineering. 1 (1): 63–5, 1979.CrossRefGoogle Scholar
  76. 76.
    Ferrier J. Ross SM. Kanehisa J. Aubin JE. Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field. Journal of Cellular Physiology. 129 (3): 283–8, 1986.CrossRefGoogle Scholar
  77. 77.
    Fitzsimmons RJ. Baylink DJ. Growth factors and electromagnetic fields in bone. Clinics in Plastic Surgery. 21 (3): 401–6, 1994.Google Scholar
  78. 78.
    Fitzsimmons RJ. Farley J. Adey WR. Baylink DJ. Embryonic bone matrix formation is increased after exposure to a low-amplitude capacitively coupled electric field, in vitro. Biochimica et Biophysica Acta. 882 (1): 51–6, 1986.CrossRefGoogle Scholar
  79. 79.
    Fitzsimmons RJ. Ryaby JT. Magee FP. Baylink DJ. Combined magnetic fields increased net calcium flux in bone cells. Calcified Tissue International. 55 (5): 376–80, 1994.CrossRefGoogle Scholar
  80. 80.
    Fitzsimmons RJ. Ryaby JT. Magee FP. Baylink DJ. IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic fields. Journal of Bone & Mineral Research. 10 (5): 812–9, 1995.CrossRefGoogle Scholar
  81. 81.
    Fitzsimmons RJ. Strong DD. Mohan S. Baylink DJ. Low-amplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release. Journal of Cellular Physiology. 150 (1): 84–9, 1992.CrossRefGoogle Scholar
  82. 82.
    Friedenberg ZB. Andrews ET. Smolenski BI. Pearl BW. Brighton CT. Bone reaction to varying amounts of direct current. Surgery, Gynecology & Obstetrics. 131 (5): 894–9, 1970.Google Scholar
  83. 83.
    Friedenberg ZB. Zemsky LM. Pollis RP. Brighton CT. The response of non-traumatized bone to direct current. Journal of Bone & Joint Surgery–American Volume. 56 (5): 1023–30, 1974.Google Scholar
  84. 84.
    Friedlaender GE. Bone grafts. The basic science rationale for clinical applications. Journal of Bone & Joint Surgery - American Volume. 69 (5): 78690, 1987.Google Scholar
  85. 85.
    Fukada E. Yasuda I. On the piezoelectric effect of bone. Journal of the Physical Society of Japan 12 (10): 1158–62, 1957.CrossRefGoogle Scholar
  86. 86.
    Galvanovskis J. Sandblom J. Bergqvist B. Galt S. Hamnerius Y. Cytoplasmic Ca2+ oscillations in human leukemia T-cells are reduced by 50 Hz magnetic fields. Bioelectromagnetics. 20 (5): 269–76, 1999.CrossRefGoogle Scholar
  87. 87.
    Garg NK. Gaur S. Sharma S. Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthopaedica Scandinavica. 64 (6): 671–2, 1993.CrossRefGoogle Scholar
  88. 88.
    Gemsa D. Seitz M. Kramer W. Grimm W. Till G. Resch K. lonophore A23187 raises cyclic AMP levels in macrophages by stimulating prostaglandin E formation. Experimental Cell Research. 118 (1): 55–62, 1979.CrossRefGoogle Scholar
  89. 89.
    Glowacki J. Kaban LB. Murray JE. Folkman J. Mulliken JB. Application of the biological principle of induced osteogenesis for craniofacial defects. Lancet. 1 (8227): 959–62, 1981.CrossRefGoogle Scholar
  90. 90.
    Goodman R. Chizmadzhev Y. Shirley-Henderson A. Electromagnetic fields and cells. Journal of Cellular Biochemistry. 51 (4): 436–41, 1993.Google Scholar
  91. 91.
    Goodship AE. Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. Journal of Bone & Joint Surgery — British Volume. 67 (4): 650–5, 1985.Google Scholar
  92. 92.
    Halle B. On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity. Bioelectromagnetics. 9 (4): 381–5, 1988.CrossRefGoogle Scholar
  93. 93.
    Hamill OP. Marty A. Neher E. Sakmann B. Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv–European Journal of Physiology. 391 (2): 85–100, 1981.CrossRefGoogle Scholar
  94. 94.
    Hartshorne AM. On the causes and treatment of pseudoarthrosis and especially of that form of it sometimes called supernumerary joint. American Journal of the Medical Sciences 1: 143, 1840.Google Scholar
  95. 95.
    Hasling C. Charles P. Jensen FT. Mosekilde L. A comparison of the effects of oestrogen/progestogen, high-dose oral calcium, intermittent cyclic etidronate and an ADFR regime on calcium kinetics and bone mass in postmenopausal women with spinal osteoporosis. Osteoporosis International. 4 (4): 191–203, 1994.CrossRefGoogle Scholar
  96. 96.
    Hastings GW. El Messiery MA. Rakowski S. Mechanoelectrical properties of bone. Biomaterials. 2 (4): 225–33, 1981.CrossRefGoogle Scholar
  97. 97.
    Hazelton B. Mitchell B. Tupper J. Calcium, magnesium, and growth control in the WI-38 human fibroblast cell. Journal of Cell Biology. 83 (2 Pt 1): 487–98, 1979.CrossRefGoogle Scholar
  98. 98.
    Hendee SP. Faour FA. Christensen DA. Patrick B. Durney CH. Blumenthal DK. The effects of weak extremely low frequency magnetic fields on calcium/calmodulin interactions. Biophysical Journal. 70 (6): 2915–23, 1996.CrossRefGoogle Scholar
  99. 99.
    Hilgemann DW. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science. 263 (5152): 1429–32, 1994.CrossRefGoogle Scholar
  100. 100.
    Hojevik P. Sandblom J. Galt S. Hamnerius Y. Ca2+ ion transport through patch-clamped cells exposed to magnetic fields. Bioelectromagnetics. 16 (1): 33–40, 1995.CrossRefGoogle Scholar
  101. Horn R. Korn SJ. Ion channels. In: Methods in Enzymology. Rudy B. Iverson LE. eds. 207:149–54, Academic Press, Orlando, Florida, 1992.Google Scholar
  102. 102.
    Huang C. Ye H. Xu J. Liu J. Qu A. Effects of extremely low frequency weak magnetic fields on the intracellular free calcium concentration in PC-12 tumor cells. [Chinese] Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering. 17(1): 63–5, 94, 2000.Google Scholar
  103. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clinical Orthopaedics & Related Research. (238): 249–81, 1989a.Google Scholar
  104. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clinical Orthopaedics & Related Research. (239): 263–85, 1989b.Google Scholar
  105. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clinical Orthopaedics & Related Research. (157): 259–78, 1981.Google Scholar
  106. 106.
    Jolley WB. Hinshaw DB. Knierim K. Hinshaw DB. Magnetic field effects on calcium efflux and insulin secretion in isolated rabbit islets of Langerhans. Bioelectromagnetics. 4 (1): 103–6, 1983.CrossRefGoogle Scholar
  107. 107.
    Jones DB. Pedley RB. Ryaby JT. Journal of Bioelectricity. 5: 145, 1986.Google Scholar
  108. 108.
    Jones DB. Ryaby JT. Trans. Eighth Bioelectromagnetics Society Meeting. 8: 45, 1986.Google Scholar
  109. 109.
    Kaban LB. Mulliken JB. Glowacki J. Treatment of jaw defects with demineralized bone implants. Journal of Oral & Maxillofacial Surgery. 40 (10): 623–6, 1982.CrossRefGoogle Scholar
  110. 110.
    Kaczmarek LK. Frequency sensitive biochemical reactions. Biophysical Chemistry. 4 (3): 249–51, 1976.CrossRefGoogle Scholar
  111. 111.
    Kenwright J. Richardson JB. Cunningham JL. White SH. Goodship AE. Adams MA. Magnussen PA. Newman JH. Axial movement and tibial fractures. A controlled randomised trial of treatment. Journal of Bone & Joint Surgery–British Volume. 73 (4): 654–9, 1991.Google Scholar
  112. 112.
    Keynes RD. Lewis PR. Journal of Physiology. 114: 152–82, 1951.Google Scholar
  113. 113.
    Khosla S. Riggs BL. Melton LJ 3d. Clinical spectrum. In: Osteoporosis: Etiology, diagnosis, and management (2nd ed.). Riggs BL. Melton LJ 3d. eds. p. 206, Lippincott-Raven, Philadelphia, 1995.Google Scholar
  114. 114.
    Krueger BK. Toward an understanding of structure and function of ion channels. FASEB Journal. 3 (8): 1906–14, 1989.Google Scholar
  115. 115.
    Lauger P. Electrogenic Ion Pumps, p. 221–223, Sinauer Associates, Sunderland, Massachusetts, 1994.Google Scholar
  116. 116.
    Lednev VV. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics. 12 (2): 71–5, 1991.CrossRefGoogle Scholar
  117. 117.
    Lee JH. McLeod KJ. Morphologic responses of osteoblast-like cells in monolayer culture to ELF electromagnetic fields. Bioelectromagnetics. 21 (2): 129–36, 2000.CrossRefGoogle Scholar
  118. 118.
    Liboff AR. Cyclotron resonance in membrane transport. In: Interactions Between Electromagnetic Fields and Cells Chiabrera A. Nicolini C. Schwan HP. eds. p. 281–96, Plenum Press, London, 1985.Google Scholar
  119. 119.
    Liboff AR. McLeod BR. Kinetics of channelized membrane ions in magnetic fields. Bioelectromagnetics. 9: 39–51, 1987.CrossRefGoogle Scholar
  120. 120.
    Liboff AR. Rozek RJ. Sherman ML. MacLeod BR. Smith SD. Ca2+-45 cyclotron resonance in human lymphocytes. Journal of Bioelectricity. 6: 13–22, 1987a.Google Scholar
  121. 121.
    Liboff AR. Smith SD. McLeod BR. Experimental evidence for ion cyclotron resonance mediation of membrane transport. In: Mechanistic approaches to interactions of electric and electromagnetic fields with living systems. Blank M. Findl E. eds. p. 109, Plenum Press, New York, 1987b.Google Scholar
  122. 122.
    Liburdy RP. Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Letters. 301 (1): 53–9, 1992.CrossRefGoogle Scholar
  123. 123.
    Lindsay R. Osteoporosis: A guide to diagnosis, prevention, and treatment. Raven Press, New York, 1992.Google Scholar
  124. 124.
    Lindsay R. Estrogen deficiency. In: Osteoporosis: Etiology, diagnosis, and management (2nd ed.). Riggs BL. Melton LJ 3d. eds. p. 140, Lippincott-Raven, Philadelphia, 1995.Google Scholar
  125. 125.
    Lindstrom E. Lindstrom P. Berglund A. Lundgren E. Mild KH. Intracellular calcium oscillations in a T-cell line after exposure to extremelylow-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics. 16 (1): 41–7, 1995.CrossRefGoogle Scholar
  126. 126.
    Lips P. Graafmans WC. Ooms ME. Bezemer PD. Bouter LM. Vitamin D supplementation and fracture incidence in elderly persons. A randomized, placebo-controlled clinical trial. Annals of Internal Medicine. 124 (4): 400–6, 1996.Google Scholar
  127. 127.
    Litovitz TA. Krause D. Montrose CJ. Mullins JM. Temporally incoherent magnetic fields mitigate the response of biological systems to temporally coherent magnetic fields. Bioelectromagnetics. 15 (5): 399–409, 1994.CrossRefGoogle Scholar
  128. 128.
    Litovitz TA. Krause D. Mullins JM. Effect of coherence time of the applied magnetic field on ornithine decarboxylase activity. Biochemical & Biophysical Research Communications. 178 (3): 862–5, 1991.CrossRefGoogle Scholar
  129. 129.
    Lopez-Rivas A. Adelberg EA. Rozengurt E. Intracellular K+ and the mitogenic response of 3T3 cells to peptide factors in serum-free medium. Proceedings of the National Academy of Sciences of the United States of America. 79 (20): 6275–9, 1982.CrossRefGoogle Scholar
  130. Lorich DG. Brighton CT. Gupta R. Corsetti JR. Levine SE. Gelb ID. Seldes R. Pollack SR. Biochemical pathway mediating the response of bone cells to capacitive coupling. Clinical Orthopaedics & Related Research. (350): 246–56, 1998.Google Scholar
  131. 131.
    Luben RA. Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems. Health Physics. 61 (1): 15–28, 1991.CrossRefGoogle Scholar
  132. 132.
    Luben RA. Cain CD. Use of bone cell hormone responses to investigate bioelectromagnetic effects on membranes in vitro. In: Nonlinear electrodynamics in biological systems. Adey WR. Lawrence AF. eds. p. 2333, Plenum Press, New York, 1984.Google Scholar
  133. 133.
    Luben RA. Cain CD. Chen MC. Rosen DM. Adey WR. Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields. Proceedings of the National Academy of Sciences of the United States of America. 79 (13): 4180–4, 1982.CrossRefGoogle Scholar
  134. 134.
    Lyle DB. Wang XH. Ayotte RD. Sheppard AR. Adey WR. Calcium uptake by leukemic and normal T-lymphocytes exposed to low frequency magnetic fields. Bioelectromagnetics. 12 (3): 145–56, 1991.CrossRefGoogle Scholar
  135. 135.
    Lyle DB. Doshi J. Fuchs TA. Casamento JP. Sei Y. Swicord ML. Intracellular calcium signalling by human human T-leukemic cells exposed to an induced 1 my/cm 60Hz, sinusoidal electric field. World Congress Electromagnetic Biological Medicine 1st, p. 13, Orlando, Florida, 1992.Google Scholar
  136. 136.
    Mahmud FA. Hastings GW. Martini M. Model to characterize strain generated potentials in bone. Journal of Biomedical Engineering. 10 (1): 54–6, 1988.CrossRefGoogle Scholar
  137. 137.
    Marron MT. Goodman EM. Sharpe PT. Greenebaum B. Low frequency electric and magnetic fields have different effects on the cell surface. FEBS Letters. 230 (1–2): 13–6, 1988.CrossRefGoogle Scholar
  138. 138.
    Mayo-Smith W. Rosenthal DI. Radiographic appearance of osteopenia. Radiologic Clinics of North America. 29 (1): 37–47, 1991.Google Scholar
  139. 139.
    McElhaney JH. The charge distribution on the human femur due to load. Journal of Bone & Joint Surgery–American Volume. 49 (8): 1561–71, 1967.Google Scholar
  140. McKibbin B. The biology of fracture healing in long bones. Journal of Bone & Joint Surgery–British Volume. 60-B(2): 150–62, 1978.Google Scholar
  141. 141.
    McLeod KJ. Lee RC. Ehrlich HP. Frequency dependence of electric field modulation of fibroblast protein synthesis. Science. 236 (4807): 1465–9, 1987.CrossRefGoogle Scholar
  142. 142.
    McLeod KJ. Rubin CT. Otter MW. Qin YX. Skeletal cell stresses and bone adaptation. American Journal of the Medical Sciences. 316 (3): 176–83, 1998.CrossRefGoogle Scholar
  143. 143.
    Meldolesi J. Clementi E. Fasolato C. Zacchetti D. Pozzan T. Ca2+ influx following receptor activation. Trends in Pharmacological Sciences. 12 (8): 289–92, 1991.CrossRefGoogle Scholar
  144. 144.
    Mendoza SA. Wigglesworth NM. Pohjanpelto P. Rozengurt E. Na entry and Na-K pump activity in murine, hamster, and human cells-effect of monensin, serum, platelet extract, and viral transformation. Journal of Cellular Physiology. 103 (1): 17–27, 1980.CrossRefGoogle Scholar
  145. 145.
    Misakian M. Sheppard AR. Krause D. Frazier ME. Miller DL. Biological, physical, and electrical parameters for in vitro studies with ELF magnetic and electric fields: a primer. Bioelectromagnetics. Suppl 2: 1–73, 1993.Google Scholar
  146. 146.
    Moolenaar WH. Tsien RY. van der Saag PT. de Laat SW. Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature. 304 (5927): 645–8, 1983.CrossRefGoogle Scholar
  147. 147.
    Mullins JM. Litovitz TA. Montrose CJ. The role of coherence in electromagnetic field-induced bioeffects: The signal-to-noise dilemma. In: Electromagnetic Fields Biological Interactions and Mechanisms. Blank M. ed. p. 319–38, American Chemical Society, Washington, D.C., 1995.CrossRefGoogle Scholar
  148. 148.
    Neher E. Cell physiology. Controls on calcium influx. Nature. 355 (6358): 298–9, 1992.CrossRefGoogle Scholar
  149. 149.
    Niedergerke R. Page S. A new method for the determination of calcium fluxes in the frog heart by means of high precision measurement of 45 calcium concentrations. Pflugers Archiv–European Journal of Physiology. 306 (4): 354–6, 1969.CrossRefGoogle Scholar
  150. Otter MW. McLeod KJ. Rubin CT. Effects of electromagnetic fields in experimental fracture repair. Clinical Orthopaedics & Related Research. (355 Suppl): S90–104, 1998.Google Scholar
  151. 151.
    Otter MW. Qin YX. Rubin CT. McLeod KJ. Does bone perfusion/reperfusion initiate bone remodeling and the stress fracture syndrome?. Medical Hypotheses. 53 (5): 363–8, 1999.CrossRefGoogle Scholar
  152. 152.
    Parfitt AM. Trabecular bone architecture in the pathogenesis and prevention of fracture. American Journal of Medicine. 82 (1B): 68–72, 1987.CrossRefGoogle Scholar
  153. 153.
    Peskin CS. Odell GM. Oster GF. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophysical Journal. 65 (1): 316–24, 1993.CrossRefGoogle Scholar
  154. 154.
    Pilla AA. Electrochemical information and energy transfer in vivo. Proceedings 7th Intersociety Energy Conversion and Engineering Conference. p. 761–764, American Chemistry Society, Washington D.C., 1972.Google Scholar
  155. 155.
    Pilla AA. Electrochemical information transfer at living cell membranes. Annals of the New York Academy of Sciences. 238: 149–70, 1974a.CrossRefGoogle Scholar
  156. 156.
    Pilla AA. Bioelectrochemistry and Bioenergetics 1: 227, 1974b.CrossRefGoogle Scholar
  157. 157.
    Pilla AA. In “Bioelectrochemistry”. In: Keyzer H. Gutman F. eds. p. 353, Plenum Press, New York, 1980.Google Scholar
  158. 158.
    Pollack SR. Korostoff E. Starkebaum W. lannicone W. Microelectrode studies of stress generated potentials in bone. In: Electrical Properties of Bone and Cartilage. Brighton CT. Black J. Pollack SR. eds. p. 69–81, Grune and Stratton, New York, 1979.Google Scholar
  159. 159.
    Reese JA. Frazier ME. Morris JE. Buschbom RL. Miller DL. Evaluation of changes in diatom mobility after exposure to 16-Hz electromagnetic fields. Bioelectromagnetics. 12 (1): 21–5, 1991.CrossRefGoogle Scholar
  160. 160.
    Reinbold KA. Pollack SR. Serum plays a critical role in modulating [Ca2+]c of primary culture bone cells exposed to weak ion-resonance magnetic fields. Bioelectromagnetics. 18 (3): 203–14, 1997.CrossRefGoogle Scholar
  161. 161.
    Riggs BL. Melton LJ 3d. The prevention and treatment of osteoporosis. New England Journal of Medicine. 327 (9): 620–7, 1992.CrossRefGoogle Scholar
  162. 162.
    Rijal KP. Kashimoto O. Sakurai M. Effect of capacitively coupled electric fields on an experimental model of delayed union of fracture. Journal of Orthopaedic Research. 12 (2): 262–7, 1994.CrossRefGoogle Scholar
  163. 163.
    Rink TJ. Tsien RY. Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. Journal of Cell Biology. 95 (1): 189–96, 1982.CrossRefGoogle Scholar
  164. 164.
    Rinsky LA. Halpern A. Schurman DB. Bassett CAL. Electrical stimulation of experimentally produced avascular necrosis of the femoral head. Orthopedic Transactions Journal and Bone Joint Surgery. 4: 238, 1980.Google Scholar
  165. 165.
    Rodan GA. Perspectives. Mechanical loading, estrogen deficiency, and the coupling of bone formation to bone resorption. Journal of Bone & Mineral Research. 6 (6): 527–30, 1991.CrossRefGoogle Scholar
  166. 166.
    Rodan GA. Rodan SB. The cells of bone. In: Osteoporosis: Etiology, diagnosis, and management (2nd ed.). Riggs BL. Melton LJ 3d. eds. p. 2–11, Lippincott-Raven, Philadelphia, 1995.Google Scholar
  167. 167.
    Rosen DM. Luben RA. Multiple hormonal mechanisms for the control of collagen synthesis in an osteoblast-like cell line, MMB-1. Endocrinology. 112 (3): 992–9, 1983.CrossRefGoogle Scholar
  168. 168.
    Rozek RJ. Sherman ML. Liboff AR. McLeod BR. Smith SD. Nifedipine is an antagonist to cyclotron resonance enhancement of 45Ca incorporation in human lymphocytes. Cell Calcium. 8 (6): 413–27, 1987.CrossRefGoogle Scholar
  169. 169.
    Rubin CT. McLeod KJ. Lanyon LE. Prevention of osteoporosis by pulsed electromagnetic fields. Journal of Bone & Joint Surgery–American Volume. 71 (3): 411–7, 1989.Google Scholar
  170. 170.
    Russell RGG. Bone cell biology: The role of cytokines and other mediators. In: Osteoporosis. Smith R. ed. p. 9–33, Royal College of Physicians, London, 1990.Google Scholar
  171. 171.
    Ryaby JT. Jones DB. Pedley B. Pilla AA. Trans. Fifth Bioelectrical Repair and Growth Society. 6: 32, 1986.Google Scholar
  172. 172.
    Ryaby JT. Jones DB. Pilla AA. Trans. Sixth Bioelectrical Repair and Growth Society. 5: 37, 1985.Google Scholar
  173. 173.
    Schlessinger J. The epidermal growth factor receptor as a multifunctional allosteric protein. Biochemistry. 27 (9): 3119–23, 1988.CrossRefGoogle Scholar
  174. Schwan HP. Electrical properties of cells: principles, some recent results and some unresolved problems. In: The biophysical approach to excitable systems. Honoring KS Cole’s 80th Birthday. New York, Plenum Publishing Corpoation, 1981.Google Scholar
  175. 175.
    Schwartz JL. House DE. Mealing GA. Exposure of frog hearts to CW or amplitude-modulated VHF fields: selective efflux of calcium ions at 16 Hz. Bioelectromagnetics. 11 (4): 349–58, 1990.CrossRefGoogle Scholar
  176. 176.
    Seeman E. Wahner HW. Offord KP. Kumar R. Johnson WJ. Riggs BL. Differential effects of endocrine dysfunction on the axial and the appendicular skeleton. Journal of Clinical Investigation. 69 (6): 1302–9, 1982.CrossRefGoogle Scholar
  177. 177.
    Serpersu EH. Tsong TY. Stimulation of a ouabain-sensitive Rb+ uptake in human erthrocytes with an external electric field. Journal of Membrane Biology. 74 (3): 191–201, 1983.CrossRefGoogle Scholar
  178. 178.
    Serpersu EH. Tsong TY. Activation of electrogenic Rb+ transport of (Na,K)-ATPase by an electric field. Journal of Biological Chemistry. 259 (11): 7155–62, 1984.Google Scholar
  179. 179.
    Sharma S. Garg NK. Veliath AJ. Subramanian S. Srivastava KK. Percutaneous bone-marrow grafting of osteotomies and bony defects in rabbits. Acta Orthopaedica Scandinavica. 63 (2): 166–9, 1992.CrossRefGoogle Scholar
  180. 180.
    Skou JC. Biochimica et Biophysica Acta. 23: 394–401, 1957.CrossRefGoogle Scholar
  181. 181.
    Smith SD. McLeod BR. Liboff AR. Cooksey K. Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics. 8 (3): 215–27, 1987.CrossRefGoogle Scholar
  182. 182.
    Stagg RB. Hardy PT. MacMurray A. Adey WR. Electric and magnetic field interactions with microsomal membrane: A novel system for studying calcium flux across membrane. World Congress Electromagnetic Biological Medicine 1st, p. 12, Orlando, Florida, 1992.Google Scholar
  183. 183.
    Stoy RD. Foster KR. Schwan HP. Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data. Physics in Medicine & Biology. 27 (4): 501–13, 1982.CrossRefGoogle Scholar
  184. 184.
    Teissie J. Knox BE. Tsong TY. Wehrle J. Synthesis of adenosine triphosphate in respiration-inhibited submitochondrial particles induced by microsecond electric pulses. Proceedings of the National Academy of Sciences of the United States of America. 78 (12): 7473–7, 1981.CrossRefGoogle Scholar
  185. 185.
    Tenforde TS. Kaune WT. Interaction of extremely low frequency electric and magnetic fields with humans. Health Physics. 53 (6): 585–606, 1987.CrossRefGoogle Scholar
  186. 186.
    Tsong TY. Astumian RD. Bioelectrochemistry and Bioenergetics. 15: 457–476, 1986.CrossRefGoogle Scholar
  187. 187.
    Tsong TY. Astumian RD. Electroconformational coupling and membrane protein function. Progress in Biophysics & Molecular Biology. 50 (1): 1–45, 1987.CrossRefGoogle Scholar
  188. 188.
    Tsong TY. Astumian RD. Electroconformational coupling: how membrane-bound ATPase transduces energy from dynamic electric fields. Annual Review of Physiology. 50: 273–90, 1988.CrossRefGoogle Scholar
  189. 189.
    Tsong TY. Liu DS. Chauvin F. Gaigalas A. Astumian RD. Electroconformational coupling (ECC): an electric field induced enzyme oscillation for cellular energy and signal transductions. Bioelectrochemistry and Bioenergetics. 21: 319–31, 1989.CrossRefGoogle Scholar
  190. 190.
    Upton J. Boyajian M. Mulliken JB. Glowacki J. The use of demineralized xenogeneic bone implants to correct phalangeal defects: a case report. Journal of Hand Surgery–American Volume. 9 (3): 388–91, 1984.Google Scholar
  191. 191.
    Urist MR. Bone: formation by autoinduction. Science. 150 (698): 893–9, 1965.CrossRefGoogle Scholar
  192. 192.
    Walleczek J. Budinger TF. Pulsed magnetic field effects on calcium signaling in lymphocytes: dependence on cell status and field intensity. FEBS Letters. 314 (3): 351–5, 1992.CrossRefGoogle Scholar
  193. 193.
    Walleczek J. Liburdy RP. Nonthermal 60 Hz sinusoidal magnetic-field exposure enhances 45Ca2+ uptake in rat thymocytes: dependence on mitogen activation. FEBS Letters. 271 (1–2): 157–60, 1990.CrossRefGoogle Scholar
  194. 194.
    Wang Z. Estacion M. Mordan LJ. Ca2+ influx via T-type channels modulates PDGF-induced replication of mouse fibroblasts. American Journal of Physiology. 265 (5 Pt 1): C1239–46, 1993.Google Scholar
  195. 195.
    Wark JD. Osteoporosis: pathogenesis, diagnosis, prevention and management. Baillieres Clinical Endocrinology & Metabolism. 7 (1): 151–81, 1993.CrossRefGoogle Scholar
  196. 196.
    Weaver JC. Langer R. Potts RO. Tissue electroporation for localized drug delivery. In: Electromagnetic Fields Biological Interactions and Mechanisms. Blank M. ed. p. 301–16, American Chemical Society, Washington, D.C., 1995.CrossRefGoogle Scholar
  197. 197.
    Westerhoff HV. Chen Y. Stochastic free energy transduction. Proceedings of the National Academy of Sciences of the United States of America. 82 (10): 3222–6, 1985.CrossRefGoogle Scholar
  198. 198.
    Whitfield JF. Boynton AL. MacManus JP. Rixon RH. Silorska M. Tsong B. Waler PR. Swierenga SH. Annals of the New York Academy of Sciences. 339: 216, 1981.CrossRefGoogle Scholar
  199. 199.
    Yarden Y. Ullrich A. Growth factor receptor tyrosine kinases. Annual Review of Biochemistry. 57: 443–78, 1988.CrossRefGoogle Scholar
  200. 200.
    Yost MG. Liburdy RP. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Letters. 296 (2): 117–22, 1992.CrossRefGoogle Scholar
  201. 201.
    Zengo AN. Bassett CA. Prountzos G. Pawluk RJ. Pilla A. In vivo effects of direct current in the mandible. Journal of Dental Research. 55(3):383–90, 1976.Google Scholar
  202. Aaron RK. Lennox D. Bunce GE. Ebert T. The conservative treatment of osteonecrosis of the femoral head. A comparison of core decompression and pulsing electromagnetic fields. Clinical Orthopaedics & Related Research. (249): 209–18, 1989.Google Scholar
  203. 203.
    Adey WR. Evidence for cooperative mechanisms in the susceptibility of cerebral tissue to environmental and intrinsic electric fields. In: Functional Linkage in Biomolecular Systems. Schmitt FO. Schneider DM. Crothers DM. eds. p. 325–42, Raven Press, New York, 1975.Google Scholar
  204. 204.
    Adey WR. Frequency and power windowing in tissue interactions with weak electromagnetic fields. Proceedings IEEE. 68: 119–25, 1980.CrossRefGoogle Scholar
  205. 205.
    Adey WR. Tissue interactions with nonionizing electromagnetic fields. Physiological Reviews. 61 (2): 435–514, 1981.Google Scholar
  206. 206.
    Adey WR. Biological models of electromagnetic field interactions with tissues: A review and synthesis of recent findings. In: Interaction of Biological Systems with Static and ELF Electric and Magnetic Fields. Proceedings of the 23rd Annual Hanford Life Sciences Symposium. DOE Symposium Series CONF-841041. Andersen LE. Weigel RJ. Kelman BJ. eds. p. 237–48, National Technical Information Service, Springfield, Virgina, 1987.Google Scholar
  207. 207.
    Albertini A. Zucchini P. Noera G. Cadossi R. Napoleone CP. Pierangeli A. Protective effect of low frequency low energy pulsing electromagnetic fields on acute experimental myocardial infarcts in rats. Bioelectromagnetics. 20 (6): 372–7, 1999.CrossRefGoogle Scholar
  208. 208.
    Amassian VE. Quirk GJ. Stewart M. A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroencephalography & Clinical Neurophysiology. 77 (5): 390–401, 1990.CrossRefGoogle Scholar
  209. 209.
    Anonymous. Diagnostic and therapeutic technology assessment (DATTA). Noninvasive electrical stimulation for nonunited bone fracture. JAMA. 261 (6): 917–9, 1989.Google Scholar
  210. 210.
    Anninos PA. Tsagas N. Sandyk R. Derpapas K. Magnetic stimulation in the treatment of partial seizures. International Journal of Neuroscience. 60 (3–4): 141–71, 1991.CrossRefGoogle Scholar
  211. 211.
    Balldin J. Eden S. Granerus AK. Modigh K. Svanborg A. Walinder J. Wallin L. Electroconvulsive therapy in Parkinson’s syndrome with “on-off’ phenomenon. Journal of Neural Transmission. 47 (1): 11–21, 1980.CrossRefGoogle Scholar
  212. 212.
    Baranowski TJ Jr. Black J. Brighton CT. Friedenberg ZB. Electrical osteogenesis by low direct current. Journal of Orthopaedic Research. 1 (2): 120–8, 1983.CrossRefGoogle Scholar
  213. 213.
    Barker AT. An introduction to the basic principles of magnetic nerve stimulation. Journal of Clinical Neurophysiology. 8 (1): 26–37, 1991.MathSciNetCrossRefGoogle Scholar
  214. 214.
    Barker AT. Dixon RA. Sharrard WJ. Sutcliffe ML. Pulsed magnetic field therapy for tibial non-union. Interim results of a double-blind trial. Lancet. 1 (8384): 994–6, 1984.CrossRefGoogle Scholar
  215. 215.
    Bassett CA. The development and application of pulsed electromagnetic fields (PEMFs) for ununited fractures and arthrodeses. Orthopedic Clinics of North America. 15 (1): 61–87, 1984.Google Scholar
  216. 216.
    Bassett CA. Mitchell SN. Gaston SR. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. Journal of Bone & Joint Surgery–American Volume. 63 (4): 511–23, 1981.Google Scholar
  217. 217.
    Bassett CA. Mitchell SN. Gaston SR. Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA. 247 (5): 623–8, 1982.CrossRefGoogle Scholar
  218. Bassett CA. Pilla AA. Pawluk RJ. A non-operative salvage of surgically-resistant pseudarthroses and non-unions by pulsing electromagnetic fields. A preliminary report. Clinical Orthopaedics & Related Research. (124): 128–43, 1977.Google Scholar
  219. 219.
    Bassett CA. Pawluk RJ. Pilla AA. Augmentation of bone repair by inductively coupled electromagnetic fields. Science. 184 (136): 575–7, 1974.CrossRefGoogle Scholar
  220. 220.
    Bassett LS. Tzitzikalakis G. Pawluk RJ. Bassett CAL. Prevention of disuse osteoporosis in the rats by means of pulsing electromagnetic fields. In: Electrical Properties of Bone and Cartilage: Experimental Effects and Clinical Applications. Brighton CT. Black J. Pollack SR. eds. p. 311–31, Grune & Stratton, New York, 1979.Google Scholar
  221. 221.
    Bauer HJ. Problems of symptomatic therapy in multiple sclerosis. Neurology. 28 (9 Pt 2): 8–20, 1978.CrossRefGoogle Scholar
  222. 222.
    Bawin SM. Adey WR. Sabbot IM. Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. Proceedings of the National Academy of Sciences of the United States of America. 75 (12): 63148, 1978a.CrossRefGoogle Scholar
  223. 223.
    Bawin SM Sheppard AR. Adey WR. Possible mechanisms of weak electromagnetic field coupling in brain tissue. Bioelectrochemistry and Bioenergetics. 5: 67–76, 1978b.CrossRefGoogle Scholar
  224. 224.
    Beatty WW. Goodkin DE. Beatty PA. Monson N. Frontal lobe dysfunction and memory impairment in patients with chronic progressive multiple sclerosis. Brain & Cognition. 11 (1): 73–86, 1989.CrossRefGoogle Scholar
  225. 225.
    Becker RO. The control system governing bone growth in response to mechanical stress. Journal of the Arkansas Medical Society. 62 (10): 404–6, 1966.Google Scholar
  226. 226.
    Becker RO. Bachman CH. Bioelectric effects in tissue. Clinical Orthopaedics & Related Research. 43: 251–3, 1965.Google Scholar
  227. 227.
    Becker RO. Brown FM. Photoelectric effects in human bone. Nature. 206 (991): 1325–8, 1965.CrossRefGoogle Scholar
  228. 228.
    Binderman I. Shimshoni Z. Somjen D. Biochemical pathways involved in the translation of physical stimulus into biological message. Calcified Tissue International. 36 Suppl 1: S82–5, 1984.Google Scholar
  229. 229.
    Binderman I. Somjen D. Shimshoni Z. Levy J. Fischler H. Korenstein R. Stimulation of skeletal-derived cell cultures by different electric field intensities is cell-specific. Biochimica et Biophysica Acta. 844 (3): 273–9, 1985.CrossRefGoogle Scholar
  230. 230.
    Birnbaumer L. Pohl SL. Rodbell M. Adenyl cyclase in fat cells. 1. Properties and the effects of adrenocorticotropin and fluoride. Journal of Biological Chemistry. 244 (13): 3468–76, 1969.Google Scholar
  231. 231.
    Blackman CF. Benane SG. House DE. Joines WT. Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics. 6 (1): 1–11, 1985.CrossRefGoogle Scholar
  232. 232.
    Blackman CF. Benane SG. Kinney LS. Joines WT. House DE. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiation Research. 92 (3): 510–20, 1982.CrossRefGoogle Scholar
  233. 233.
    Bonewald LF. Mundy GR. Role of transforming growth factor beta in bone remodeling: a review. Connective Tissue Research. 23 (2–3): 201–8, 1989.CrossRefGoogle Scholar
  234. Bonewald LF. Mundy GR. Role of transforming growth factor-beta in bone remodeling. Clinical Orthopaedics & Related Research. (250): 261–76, 1990.Google Scholar
  235. 235.
    Borgens RB. Endogenous ionic currents traverse intact and damaged bone. Science. 225 (4661): 478–82, 1984.CrossRefGoogle Scholar
  236. Borsalino G. Bagnacani M. Bettati E. Fornaciari F. Rocchi R. Uluhogian S. Ceccherelli G. Cadossi R. Traina GC. Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clinical Orthopaedics & Related Research. (237): 256–63, 1988.Google Scholar
  237. 237.
    Brighton CT. The treatment of non-unions with electricity. Journal of Bone & Joint Surgery–American Volume. 63 (5): 847–51, 1981.Google Scholar
  238. Brighton CT. Breakout session. 4: Biophysical enhancement. Clinical Orthopaedics & Related Research. (355 Suppl): S357–8, 1998.Google Scholar
  239. 239.
    Brighton CT. Katz MJ. Goll SR. Nichols CE 3d. Pollack SR. Prevention and treatment of sciatic denervation disuse osteoporosis in the rat tibia with capacitively coupled electrical stimulation. Bone. 6 (2): 87–97, 1985.CrossRefGoogle Scholar
  240. 240.
    Brighton CT. Luessenhop CP. Pollack SR. Steinberg DR. Petrik ME. Kaplan FS. Treatment of castration-induced osteoporosis by a capacitively coupled electrical signal in rat vertebrae. Journal of Bone & Joint Surgery–American Volume. 71 (2): 228–36, 1989.Google Scholar
  241. 241.
    Brighton CT. McCluskey WP. Cellular response and mechanisms of action of electrically induced osteogenesis. In: Bone and Mineral Research. Peck WA. ed. p. 213–54, Elsevier, New York, 1986.Google Scholar
  242. 242.
    Brighton CT. Okereke E. Pollack SR. Clark CC. In vitro bone-cell response to a capacitively coupled electrical field. The role of field strength, pulse pattern, and duty cycle. Clinical Orthopaedics & Related Research. 285:255–62, 1992.Google Scholar
  243. 243.
    Brighton CT. Pollack SR. Treatment of recalcitrant non-union with a capacitively coupled electrical field. A preliminary report. Journal of Bone & Joint Surgery — American Volume. 67 (4): 577–85, 1985a.Google Scholar
  244. 244.
    Brighton CT. Tadduni GT. Goll SR. Pollack SR. Treatment of denervation/disuse osteoporosis in the rat with a capacitively coupled electrical signal: effects on bone formation and bone resorption. Journal of Orthopaedic Research. 6 (5): 676–84, 1988.CrossRefGoogle Scholar
  245. 245.
    Brighton CT. Tadduni GT. Pollack SR. Treatment of sciatic denervation disuse osteoporosis in the rat tibia with capacitively coupled electrical stimulation. Dose response and duty cycle. Journal of Bone & Joint Surgery–American Volume. 67 (7): 1022–8, 1985b.Google Scholar
  246. 246.
    Brighton CT. Wang W. Seldes R. Zhang G. Pollack S. Signal transduction in electrically stimulated bone cells. Journal of Bone & Mineral Research-American Volume. 83 (10): 1514–23, 2001.Google Scholar
  247. 247.
    Budinger TF. Lauterbur PC. Nuclear magnetic resonance technology for medical studies. Science. 226 (4672): 288–98, 1984.CrossRefGoogle Scholar
  248. 248.
    Centrella M. McCarthy TL. Canalis E. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblastenriched cell cultures from fetal rat bone. Journal of Biological Chemistry. 262 (6): 2869–74, 1987.Google Scholar
  249. 249.
    Chang WH. Hwang IM. Liu HC. Enhancement of fracture healing by specific pulsed capacitively-coupled electric field stimulation. Frontiers Med. Biol. Engng. 3 (1): 57–64, 1991.CrossRefGoogle Scholar
  250. 250.
    Chenu C. Kurihara N. Mundy GR. Roodman GD. Prostaglandin E2 inhibits formation of osteoclastlike cells in long-term human marrow cultures but is not a mediator of the inhibitory effects of transforming growth factor beta. Journal of Bone & Mineral Research. 5 (7): 677–81, 1990.CrossRefGoogle Scholar
  251. 251.
    Chiabrera A. Bianco B. Moggia E. Kaufman JJ. Zeeman-Stark modeling of the RF EMF interaction with ligand binding. Bioelectromagnetics. 21 (4): 312–24, 2000.CrossRefGoogle Scholar
  252. 252.
    Chiricolo M. Minelli L. Licastro F. Tabacchi P. Zannotti M. Franceschi C. Alterations of the capping phenomenon on lymphocytes from aged and Down’s syndrome subjects. Gerontology. 30 (3): 145–52, 1984.CrossRefGoogle Scholar
  253. 253.
    Chyun YS. Raisz LG. Stimulation of bone formation by prostaglandin E2. Prostaglandins. 27 (1): 97–103, 1984.Google Scholar
  254. 254.
    Cochran GV. Pawluk RJ. Bassett CA. Electromechanical characteristics of bone under physiologic moisture conditions. Clinical Orthopaedics & Related Research. 58: 249–70, 1968.Google Scholar
  255. 255.
    Colacicco G. Pilla AA. Chemical, physical and biological correlations in the Ca-uptake by embryonal chick tibia in vitro. Biochemistry and Bioenergetics. 10: 119–31, 1983.CrossRefGoogle Scholar
  256. 256.
    Collins DA. Chambers TJ. Effect of prostaglandins El, E2, and F2 alpha on osteoclast formation in mouse bone marrow cultures. Journal of Bone & Mineral Research. 6 (2): 157–64, 1991.CrossRefGoogle Scholar
  257. 257.
    Collins DA. Chambers TJ. Prostaglandin E2 promotes osteoclast formation in murine hematopoietic cultures through an action on hematopoietic cells. Journal of Bone & Mineral Research. 7 (5): 555–61, 1992.CrossRefGoogle Scholar
  258. 258.
    Davidovitch Z. Shanfeld JL. Montgomery PC. Lally E. Laster L. Furst L. Korostoff E. Biochemical mediators of the effects of mechanical forces and electric currents on mineralized tissues. Calcified Tissue International. 36 (Suppl 1): S86–97, 1984.CrossRefGoogle Scholar
  259. 259.
    Day BL. Dressler D. Maertens de Noordhout A. Marsden CD. Nakashima K. Rothwell JC. Thompson PD. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. Journal of Physiology. 412: 449–73, 1989.Google Scholar
  260. De Haas WG. Beaupre A. Cameron H. English E. The Canadian experience with pulsed magnetic fields in the treatment of ununited tibial fractures. Clinical Orthopaedics & Related Research. (208): 55–8, 1986.Google Scholar
  261. 261.
    De Mattei M. Caruso A. Traina GC. Pezzetti F. Baroni T. Sollazzo V. Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics. 20 (3): 177–82, 1999.CrossRefGoogle Scholar
  262. 262.
    Dealler SF. Electrical phenomena associated with bones and fractures and the therapeutic use of electricity in fracture healing. Journal of Medical Engineering & Technology. 5 (2): 73–9, 1981.CrossRefGoogle Scholar
  263. 263.
    Desimone DP. Greene VS. Hannon KS. Turner RT. Bell NH. Prostaglandin E2 administered by subcutaneous pellets causes local inflammation and systemic bone loss: a model for inflammation-induced bone disease. Journal of Bone & Mineral Research. 8 (5): 625–34, 1993.CrossRefGoogle Scholar
  264. 264.
    Downes EM. Watson J. Development of the iron-cored electromagnet for the treatment of non-union and delayed union. Journal of Bone & Joint Surgery–British Volume. 66 (5): 754–9, 1984.Google Scholar
  265. 265.
    Drevets WC. Raichle ME. Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacology Bulletin. 28 (3): 261–74, 1992.Google Scholar
  266. 266.
    Duman RS. Heninger GR. Nestler EJ. A molecular and cellular theory of depression. Archives of General Psychiatry. 54 (7): 597–606, 1997.CrossRefGoogle Scholar
  267. 267.
    Edgley SA. Eyre JA. Lemon RN. Miller S. Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey. Brain. 120 (5): 839–53, 1997.CrossRefGoogle Scholar
  268. Ellison GW. Myers LW. Leake BD. Mickey MR. Ke D. Syndulko K. Tourtellotte WW. Design strategies in multiple sclerosis clinical trials. The Cyclosporine Multiple Sclerosis Study Group. Annals of Neurology. 36 Suppl: S108–12, 1994.Google Scholar
  269. Esterhai JL Jr. Brighton CT. Heppenstall RB. Thrower A. Nonunion of the humerus. Clinical, roentgenographic, scintigraphic, and response characteristics to treatment with constant direct current stimulation of osteogenesis. Clinical Orthopaedics & Related Research. (211): 228–34, 1986.Google Scholar
  270. 270.
    Esterhai JL. Friedenberg ZB. Brighton CT. Black J. Temporal course of bone formation in response to constant direct current stimulation. Journal of Orthopaedic Research. 3 (2): 137–9, 1985.CrossRefGoogle Scholar
  271. 271.
    Eyres KS. Saleh M. Kanis JA. Effect of pulsed electromagnetic fields on bone formation and bone loss during limb lengthening. Bone. 18 (6): 505–9, 1996.CrossRefGoogle Scholar
  272. 272.
    Faber R. Trimble MR. Electroconvulsive therapy in Parkinson’s disease and other movement disorders. Movement Disorders. 6 (4): 293–303, 1991CrossRefGoogle Scholar
  273. 273.
    Fitton-Jakson S. Bassett CAL. The response of skeletal tissue to pulsed magnetic fields. In: Use of Tissue Culture in Medical Research. Richards RJ. Rajan KT. eds. p. 21–46, Pergamon, Oxyford, 1980.Google Scholar
  274. 274.
    Fitton-Jakson S. Jones DB. Murray J. Farndale R. The response of connective and skeletal tissues to pulsed magnetic fields. Trans. 1st Annual Meeting, Bioelectrical Repair and Growth Society 1: 85, 1981.Google Scholar
  275. 275.
    Fitzsimmons RJ. Farley JR. Adey WR. Baylink DJ. Frequency dependence of increased cell proliferation, in vitro, in exposures to a low-amplitude, low-frequency electric field: evidence for dependence on increased mitogen activity released into culture medium. Journal of Cellular Physiology. 139 (3): 586–91, 1989.CrossRefGoogle Scholar
  276. 276.
    Fleischmann A. Prolov K. Abarbanel J. Belmaker RH. The effect of transcranial magnetic stimulation of rat brain on behavioral models of depression. Brain Research. 699 (1): 130–2, 1995.CrossRefGoogle Scholar
  277. 277.
    Franklin GM. Nelson LM. Filley CM. Heaton RK. Cognitive loss in multiple sclerosis. Case reports and review of the literature. Archives of Neurology. 46 (2): 162–7, 1989.CrossRefGoogle Scholar
  278. 278.
    Friedenberg ZB. Brighton CT. Bioelectric potentials in bone. Journal of Bone & Joint Surgery–American Volume. 48 (5): 915–23, 1966.Google Scholar
  279. 279.
    Friedenberg ZB. Brighton CT. Bioelectricity and fracture healing. Plastic & Reconstructive Surgery. 68 (3): 435–43, 1981.Google Scholar
  280. 280.
    Friedenberg ZB. Harlow MC. Brighton CT. Healing of nonunion of the medial malleolus by means of direct current: a case report. Journal of Trauma-Injury Infection & Critical Care. 11 (10): 883–5, 1971.CrossRefGoogle Scholar
  281. 281.
    Garland DE. Adkins RH. Matsuno NN. Stewart CA. The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury. Journal of Spinal Cord Medicine. 22 (4): 239–45, 1999.Google Scholar
  282. 282.
    Geller V. Grisaru N. Abarbanel JM. Lemberg T. Belmaker RH. Slow magnetic stimulation of prefrontal cortex in depression and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 21 (1): 10510, 1997.CrossRefGoogle Scholar
  283. 283.
    George MS. Wassermann EM. Kimbrell TA. Little JT. Williams WE. Danielson AL. Greenberg BD. Hallett M. Post RM. Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial. American Journal of Psychiatry. 154 (12): 1752–6, 1997.Google Scholar
  284. 284.
    George MS. Wassermann EM. Post RM. Transcranial magnetic stimulation: a neuropsychiatric tool for the 21st century. Journal of Neuropsychiatry & Clinical Neurosciences. 8 (4): 373–82, 1996.Google Scholar
  285. 285.
    George MS. Wassermann EM. Williams WA. Callahan A. Ketter TA. Basser P. Hallett M. Post RM. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport. 6 (14): 1853–6, 1995.CrossRefGoogle Scholar
  286. 286.
    Giesser B. Multiple sclerosis. Current concepts in management. Drugs. 29 (1): 88–95, 1985.CrossRefGoogle Scholar
  287. 287.
    Glassman LS. McGrath MH. Bassett CA. Effect of external pulsing electromagnetic fields on the healing of soft tissue. Annals of Plastic Surgery. 16 (4): 287–95, 1986.CrossRefGoogle Scholar
  288. 288.
    Glazer PA. Heilmann MR. Lotz JC. Bradford DS. Use of electromagnetic fields in a spinal fusion. A rabbit model. Spine. 22 (20): 23516, 1997.CrossRefGoogle Scholar
  289. 289.
    Goldenberg DM. Hansen HJ. Electric enhancement of bone healing. Science. 175 (26): 1118–20, 1972.CrossRefGoogle Scholar
  290. 290.
    Goodman R. Bassett CA. Henderson AS. Pulsing electromagnetic fields induce cellular transcription. Science. 220 (4603): 1283–5, 1983.CrossRefGoogle Scholar
  291. 291.
    Goodman EM. Greenebaum B. Marron MT. Effects of electromagnetic fields on molecules and cells. International Review of Cytology. 158: 279–338, 1995.CrossRefGoogle Scholar
  292. 292.
    Greenberg BD. George MS. Martin JD. Benjamin J. Schlaepfer TE. Altemus M. Wassermann EM. Post RM. Murphy DL. Effect of prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: a preliminary study. American Journal of Psychiatry. 154 (6): 867–9, 1997.Google Scholar
  293. 293.
    Harrington DB. Becker RO. Electrical stimulation of RNA and protein synthesis in the frog erythrocyte. Experimental Cell Research. 76 (1): 95–8, 1973.CrossRefGoogle Scholar
  294. 294.
    Hartig M. Joos U. Wiesmann HP. Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. European Biophysics Journal. 29 (7): 499–506, 2000.CrossRefGoogle Scholar
  295. 295.
    Heaton RK. Nelson LM. Thompson DS. Burks JS. Franklin GM. Neuropsychological findings in relapsing-remitting and chronic-progressive multiple sclerosis. Journal of Consulting & Clinical Psychology. 53 (1): 103–10, 1985.CrossRefGoogle Scholar
  296. 296.
    Heermeier K. Spanner M. Trager J. Gradinger R. Strauss PG. Kraus W. Schmidt J. Effects of extremely low frequency electromagnetic field (EMF) on collagen type I mRNA expression and extracellular matrix synthesis of human osteoblastic cells. Bioelectromagnetics. 19 (4): 222–31, 1998.CrossRefGoogle Scholar
  297. 297.
    High WB. Effects of orally administered prostaglandin E-2 on cortical bone turnover in adult dogs: a histomorphometric study. Bone. 8 (6): 363–73, 1987.CrossRefGoogle Scholar
  298. 298.
    Hinsenkamp M. Chiabrera A. Ryaby J. Pilla AA. Bassett CA. Cell behaviour and DNA modification in pulsing electromagnetic fields. Acta Orthopaedica Belgica. 44 (5): 636–50, 1978.Google Scholar
  299. 299.
    Hughes RA. Prospects for the treatment of multiple sclerosis. Journal of the Royal Society of Medicine. 84 (2): 63–5, 1991.Google Scholar
  300. 300.
    leran M. Zaffuto S. Bagnacani M. Annovi M. Moratti A. Cadossi R. Effect of low frequency pulsing electromagnetic fields on skin ulcers of venous origin in humans: a double-blind study. Journal of Orthopaedic Research. 8 (2): 276–82, 1990.CrossRefGoogle Scholar
  301. 301.
    Jee WS. Mori S. Li XJ. Chan S. Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone. 11 (4): 253–66, 1990.CrossRefGoogle Scholar
  302. 302.
    Jee WS. Ueno K. Deng YP. Woodbury DM. The effects of prostaglandin E2 in growing rats: increased metaphyseal hard tissue and cortico-endosteal bone formation. Calcified Tissue International. 37 (2): 14857, 1985.CrossRefGoogle Scholar
  303. 303.
    Ji RR. Schlaepfer TE. Aizenman CD. Epstein CM. Qiu D. Huang JC. Rupp F. Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proceedings of the National Academy of Sciences of the United States of America. 95 (26): 15635–40, 1998.CrossRefGoogle Scholar
  304. 304.
    Johnson MW. Chakkalakal DA. Harper RA. Katz JL. Rouhana SW. Fluid flow in bone in vitro. Journal of Biomechanics. 15 (11): 881–5, 1982.CrossRefGoogle Scholar
  305. 305.
    Keck ME. Pijnappels M. Schubert M. Colombo G. Curt A. Dietz V. Stumbling reactions in man: influence of corticospinal input. Electroencephalography & Clinical Neurophysiology. 109 (3): 215–23, 1998.CrossRefGoogle Scholar
  306. 306.
    Kellner CH. Beale MD. Pritchett JT. Bernstein HJ. Burns CM. Electroconvulsive therapy and Parkinson’s disease: the case for further study. Psychopharmacology Bulletin. 30 (3): 495–500, 1994.Google Scholar
  307. 307.
    Kirkcaldie MT. Pridmore SA. Pascual-Leone A. Transcranial magnetic stimulation as therapy for depression and other disorders. Australian & New Zealand Journal of Psychiatry. 31 (2): 264–72, 1997.CrossRefGoogle Scholar
  308. 308.
    Klein DC. Raisz LG. Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 86 (6): 1436–1440, 1970.CrossRefGoogle Scholar
  309. 309.
    Korenstein R. Somjen D. Fischler H. Binderman I. Capacitative pulsed electric stimulation of bone cells. Induction of cyclic-AMP changes and DNA synthesis. Biochimica et Biophysica Acta. 803 (4): 302–7, 1984.CrossRefGoogle Scholar
  310. 310.
    Kraft GH. Freal JE. Coryell JK. Hanan CL. Chitnis N. Multiple sclerosis: early prognostic guidelines. Archives of Physical Medicine & Rehabilitation. 62 (2): 54–8, 1981.Google Scholar
  311. 311.
    Kurtzke JF. Beebe GW. Nagler B. Kurland LT. Auth TL. Studies on the natural history of multiple sclerosis-8. Early prognostic features of the later course of the illness. Journal of Chronic Diseases. 30 (12): 819–30, 1977.CrossRefGoogle Scholar
  312. 312.
    Lavine LS. Grodzinsky AJ. Electrical stimulation of repair of bone. Journal of Bone & Joint Surgery–American Volume. 69 (4): 626–30, 1987.Google Scholar
  313. 313.
    Lee EW. Maffulli N. Li CK. Chan KM. Pulsed magnetic and electromagnetic fields in experimental achilles tendonitis in the rat: a prospective randomized study. Archives of Physical Medicine & Rehabilitation. 78 (4): 399–404, 1997.CrossRefGoogle Scholar
  314. 314.
    Leibowitz U. Kahana E. Alter M. Multiple sclerosis in immigrant and native populations of Israel. Lancet. 2 (7634): 1323–5, 1969.CrossRefGoogle Scholar
  315. 315.
    Lerner UH. Ransjo M. Ljunggren O. Prostaglandin E2 causes a transient inhibition of mineral mobilization, matrix degradation, and lysosomal enzyme release from mouse calvarial bones in vitro. Calcified Tissue International. 40 (6): 323–31, 1987.CrossRefGoogle Scholar
  316. 316.
    Li XJ, Jee WS, Li YL, Patterson-Buckendahl P. Transient effects of subcutaneously administered prostaglandin E2 on cancellous and cortical bone in young adult dogs. Bone 11 (5): 353–64, 1990.CrossRefGoogle Scholar
  317. 317.
    Liboff AR. Electric-field ion cyclotron resonance. Bioelectromagnetics. 18 (1): 85–7, 1997.MathSciNetCrossRefGoogle Scholar
  318. Liboff AR. McLeod BR. (Abstract) Cyclotron resonance in ion channel proteins with 3-fold cylindrical symmetry. Bioelectromagnetics Tenth Annual Meeting Abstracts. p. 31, 1988.Google Scholar
  319. 319.
    Lipinski B. Biological significance of piezoelectricity in relation to acupuncture, Hatha Yoga, osteopathic medicine and action of air ions. Medical Hypotheses. 3 (1): 9–12, 1977.CrossRefGoogle Scholar
  320. 320.
    Maccabee PJ. Amassian VE. Eberle LP. Cracco RQ. Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. Journal of Physiology. 460: 201–19, 1993.Google Scholar
  321. Mammi GI. Rocchi R. Cadossi R. Massari L. Traina GC. The electrical stimulation of tibial osteotomies. Double-blind study. Clinical Orthopaedics & Related Research. (288): 246–53, 1993.Google Scholar
  322. 322.
    Matsunaga S. Sakou T. Ijiri K. Osteogenesis by pulsing electromagnetic fields (PEMFs): optimum stimulation setting. In Vivo. 10(3):351–6, 1996.Google Scholar
  323. 323.
    McCann UD. Kimbrell TA. Morgan CM. Anderson T. Geraci M. Benson BE. Wassermann EM. Willis MW. Post RM. Repetitive transcranial magnetic stimulation for posttraumatic stress disorder. Archives of General Psychiatry. 55 (3): 276–9, 1998.CrossRefGoogle Scholar
  324. 324.
    McElhaney JH. Stalnaker R. Electric fields and bone loss of disuse. Journal of Biomechanics. 1: 47–52, 1968.CrossRefGoogle Scholar
  325. 325.
    McLean BN. Zeman AZ. Barnes D. Thompson EJ. Patterns of blood-brain barrier impairment and clinical features in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 56 (4): 356–60, 1993.CrossRefGoogle Scholar
  326. 326.
    McLeod KJ. Donahue HJ. Levin PE. Fontaine MA. Rubin CT. Electric fields modulate bone cell function in a density-dependent manner. Journal of Bone & Mineral Research. 8 (8): 977–84, 1993.CrossRefGoogle Scholar
  327. McLeod KJ. Liboff AR. (Abstract) Electromagnetically induced osteogenesis: Cyclotron resonance as a testable hypothesis. Fifth Annual Meeting of the Bioelectrical Repair and Growth Society. p. 16, 1985.Google Scholar
  328. 328.
    McLeod BR. Liboff AR. Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation. Bioelectromagnetics. 7 (2): 177–89, 1986.CrossRefGoogle Scholar
  329. 329.
    McLeod BR. Liboff AR. Cyclotron resonance in cell membranes; The theory of the mechanism. In: Mechanistic Approaches to Interactions of Electromagnetic Fields with Living Systems. Blank M. Findl E. eds. Plenum Press, New York, 1987.Google Scholar
  330. McLeod BR. Liboff AR. Smith SD. Cooksey K. (Abstract) Harmonic response patterns of biosystems exposed to weak EM fields. Bioelectromagnetics Ninth Annual Meeting Abstracts. p. 23, 1987.Google Scholar
  331. 331.
    Miller RA. Jacobson B. Weil G. Simons ER. Diminished calcium influx in lectin-stimulated T cells from old mice. Journal of Cellular Physiology. 132 (2): 337–42, 1987.CrossRefGoogle Scholar
  332. 332.
    Minderhoud JM. van der Hoeven JH. Prange AJ. Course and prognosis of chronic progressive multiple sclerosis. Results of an epidemiological study. Acta Neurologica Scandinavica. 78 (1): 10–5, 1988.CrossRefGoogle Scholar
  333. 333.
    Mishima S. The effect of long-term pulsing electromagnetic field stimulation on experimental osteoporosis of rats. Sangyo Ika Daigaku Zasshi. 10 (1): 31–45, 1988.Google Scholar
  334. 334.
    Mooney V. A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine. 15 (7): 708–12, 1990.CrossRefGoogle Scholar
  335. 335.
    Muller JC. Spaas F. Out-patient treatment of surgically resistant non- unions by induced pulsing current–clinical results. Archives of Orthopaedic & Traumatic Surgery. 97 (4): 293–7, 1980.CrossRefGoogle Scholar
  336. 336.
    Murray JC. Ferndale RW. Modulation of collagen production in cultured fibroblasts by a low-frequency, pulsed magnetic field. Biochimica et Biophysica Acta. 838 (1): 98–105, 1985.CrossRefGoogle Scholar
  337. 337.
    Nagai M. Suzuki Y. Ota M. Systematic assessment of bone resorption, collagen synthesis, and calcification in chick embryonic calvaria in vitro: effects of prostaglandin E2. Bone. 14 (4): 655–659, 1993.CrossRefGoogle Scholar
  338. 338.
    Nagata T. Kaho K. Nishikawa S. Shinohara H. Wakano Y. Ishida H. Effect of prostaglandin E2 on mineralization of bone nodules formed by fetal rat calvarial cells. Calcified Tissue International. 55 (6): 451–7, 1994.CrossRefGoogle Scholar
  339. 339.
    Nicolini C. Cavazza B. Trefiletti V. Pioli F. Beltrame F. Brambilla G. Maraldi N. Patrone E. Higher-order structure of chromatin from resting cells. Il. High-resolution computer analysis of native chromatin fibres and freeze-etching of nuclei from rat liver cells. Journal of Cell Science. 62: 103–15, 1983.Google Scholar
  340. Norton LA. Rodan GA. Bourret LA. Epiphyseal cartilage cAMP changes produced by electrical and mechanical perturbations. Clinical Orthopaedics & Related Research. (124): 59–68, 1977.Google Scholar
  341. 341.
    Noseworthy J. Paty D. Wonnacott T. Feasby T. Ebers G. Multiple sclerosis after age 50. Neurology. 33 (12): 1537–44, 1983.CrossRefGoogle Scholar
  342. 342.
    O’Connor BT. Treatment of surgically resistant non-unions with pulsed electromagnetic fields. Reconstruction Surgery & Traumatology. 19: 123–32, 1985.Google Scholar
  343. 343.
    Onuma EK. Hui SW. Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. Journal of Cell Biology. 106 (6): 2067–75, 1988.CrossRefGoogle Scholar
  344. 344.
    Ozawa H. Abe E. Shibasaki Y. Fukuhara T. Suda T. Electric fields stimulate DNA synthesis of mouse osteoblast-like cells (MC3T3–E1) by a mechanism involving calcium ions. Journal of Cellular Physiology. 138 (3): 477–83, 1989.CrossRefGoogle Scholar
  345. 345.
    Pascual-Leone A. Rubio B. Pallardo F. Catala MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet. 348 (9022): 233–7, 1996.CrossRefGoogle Scholar
  346. 346.
    Pfeilschifter J. Pignat W. Vosbeck K. Marki F. Interleukin 1 and tumor necrosis factor synergistically stimulate prostaglandin synthesis and phospholipase A2 release from rat renal mesangial cells. Biochemical & Biophysical Research Communications. 159 (2): 385–94, 1989.CrossRefGoogle Scholar
  347. 347.
    Pilla AA. Electrochemical information transfer at living cell membranes. Annals of the New York Academy of Sciences. 238: 149–70, 1974.CrossRefGoogle Scholar
  348. 348.
    Reid PD. Shajahan PM. Glabus MF. Ebmeier KP. Transcranial magnetic stimulation in depression. British Journal of Psychiatry. 173: 449–52, 1998.CrossRefGoogle Scholar
  349. 349.
    Robinson KR. The responses of cells to electrical fields: a review. Journal of Cell Biology. 101 (6): 2023–7, 1985.CrossRefGoogle Scholar
  350. 350.
    Rosen DM. Stempien SA. Thompson AY. Seyedin SM. Transforming growth factor-beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. Journal of Cellular Physiology. 134 (3): 337–46, 1988.CrossRefGoogle Scholar
  351. 351.
    Rossini PM. Rossi S. Clinical applications of motor evoked potentials. Electroencephalography & Clinical Neurophysiology. 106 (3): 180–94, 1998.CrossRefGoogle Scholar
  352. 352.
    Roth BJ. Saypol JM. Hallett M. Cohen LG. A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalography & Clinical Neurophysiology. 81 (1): 47–56, 1991.CrossRefGoogle Scholar
  353. 353.
    Rubin J. McLeod KJ. Titus L. Nanes MS. Catherwood BD. Rubin CT. Formation of osteoclast-like cells is suppressed by low frequency, low intensity electric fields. Journal of Orthopaedic Research. 14 (1): 7–15, 1996.CrossRefGoogle Scholar
  354. 354.
    Rudick RA. Goodkin DE. Ransohoff RM. Pharmacotherapy of multiple sclerosis: current status. Cleveland Clinic Journal of Medicine. 59 (3): 267–77, 1992.Google Scholar
  355. 355.
    Rundles RW. Moore JO. Chronic lymphocytic leukemia. Cancer. 42 (2 Suppl): 941–5, 1978.CrossRefGoogle Scholar
  356. 356.
    Saffar JL. Leroux P. Role of prostaglandins in bone resorption in a synchronized remodeling sequence in the rat. Bone 9 (3): 141–145, 1988.CrossRefGoogle Scholar
  357. 357.
    Salzstein RA. Pollack SR. Electromechanical potentials in cortical bone-II. Experimental analysis. Journal of Biomechanics. 20 (3): 271–80, 1987.CrossRefGoogle Scholar
  358. 358.
    Sandyk R. Long term beneficial effects of weak electromagnetic fields in multiple sclerosis. International Journal of Neuroscience. 83 (1–2): 45–57, 1995a.CrossRefGoogle Scholar
  359. 359.
    Sandyk R. Premenstrual exacerbation of symptoms in multiple sclerosis is attenuated by treatment with weak electromagnetic fields. International Journal of Neuroscience. 83 (3–4): 187–98, 1995b.CrossRefGoogle Scholar
  360. 360.
    Sandyk R. Treatment with electromagnetic field alters the clinical course of chronic progressive multiple sclerosis-a case report. International Journal of Neuroscience. 88 (1–2): 75–82, 1996.CrossRefGoogle Scholar
  361. 361.
    Sandyk R. Impairment of depth perception in multiple sclerosis is improved by treatment with AC pulsed electromagnetic fields. International Journal of Neuroscience. 98 (1–2): 83–94, 1999.CrossRefGoogle Scholar
  362. 362.
    Sandyk R. Awerbuch GI. Nocturnal plasma melatonin and alpha- melanocyte stimulating hormone levels during exacerbation of multiple sclerosis. International Journal of Neuroscience. 67 (1–4): 173–86, 1992.CrossRefGoogle Scholar
  363. 363.
    Sandyk R. Awerbuch GI. Nocturnal melatonin secretion in multiple sclerosis patients with affective disorders. International Journal of Neuroscience. 68 (3–4): 227–40, 1993.CrossRefGoogle Scholar
  364. 364.
    Sandyk R. Dann LC. Weak electromagnetic fields attenuate tremor in multiple sclerosis. International Journal of Neuroscience. 79 (3–4): 199–212, 1994.CrossRefGoogle Scholar
  365. 365.
    Sandyk R. Dann LC. Resolution of Lhermitte’s sign in multiple sclerosis by treatment with weak electromagnetic fields. International Journal of Neuroscience. 81 (3–4): 215–24, 1995.CrossRefGoogle Scholar
  366. 366.
    Sandyk R. Iacono RP. Resolution of longstanding symptoms of multiple sclerosis by application of picoTesla range magnetic fields. International Journal of Neuroscience. 70 (3–4): 255–69, 1993.CrossRefGoogle Scholar
  367. 367.
    Santoro MG. Jaffe BM. Simmons DJ. Bone resorption in vitro and in vivo in PGE-treated mice. Experimental Biology & Medicine. 156 (2): 373–7, 1977.Google Scholar
  368. 368.
    Saypol JM. Roth BJ. Cohen LG. Hallett M. A theoretical comparison of electric and magnetic stimulation of the brain [published erratum appears in Ann Biomed Eng 1992;20(4):495]. Annals of Biomedical Engineering. 19 (3): 317–28, 1991.Google Scholar
  369. 369.
    Schelling SH. Wolfe HJ. Tashjian AH Jr. Role of the osteoclast in prostaglandin E2-stimulated bone resorption: a correlative morphometric and biochemical analysis. Laboratory Investigation. 42 (3): 290–5, 1980.Google Scholar
  370. 370.
    Shankar VS. Simon BJ. Bax CM. Pazianas M. Moonga BS. Adebanjo OA. Zaidi M. Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts. Journal of Cellular Physiology. 176 (3): 537–44, 1998.CrossRefGoogle Scholar
  371. 371.
    Sharrard WJ. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. Journal of Bone & Joint Surgery–British Volume. 72 (3): 347–55, 1990.Google Scholar
  372. 372.
    Sharrard WJ. Sutcliffe ML. Robson MJ. MacEachern AG. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. Journal of Bone & Joint Surgery–British Volume. 64 (2): 189–93, 1982.Google Scholar
  373. 373.
    Sheppard AR. Adey WR. The role of cell surface polarization in biological effects of extremely low frequency fields. In: Biological Effects of Extremely-Low-Frequency Electromagnetic Fields. Proceedings of the 18th Annual Hanford Life Sciences Symposium. NTIS CONF-781016. Phillips RD. et al. eds. p. 147–58, National Technical Information Service, Springfield, Virginia, 1979.Google Scholar
  374. 374.
    Shih MS. Norrdin RW. Effect of prostaglandin E2 on rib fracture healing in beagles: histomorphometric study on periosteum adjacent to the fracture site. American Journal of Veterinary Research. 47 (7): 1561–4, 1986a.Google Scholar
  375. 375.
    Shih MS. Norridin RW. Effects of prostaglandins on regional remodeling changes during tibial healing in beagles: a histomorphometric study. Calcified Tissue International. 39 (3): 191–7, 1986b.CrossRefGoogle Scholar
  376. 376.
    Shinar DM. Sato M. Rodan GA. The effect of hemopoietic growth factors on the generation of osteoclast-like cells in mouse bone marrow cultures. Endocrinology. 126 (3): 1728–35, 1990.CrossRefGoogle Scholar
  377. Smith SD. McLeod BR. Liboff AR. Cyclotron resonance control of explanted chick femurs. Eighth Annual Meeting of the Bioelectrical Repair and Growth Society, p. 6, 1988.Google Scholar
  378. 378.
    Sollazzo V. Traina GC. DeMattei M. Pellati A. Pezzetti F. Caruso A. Responses of human MG-63 osteosarcoma cell line and human osteoblastlike cells to pulsed electromagnetic fields. Bioelectromagnetics. 18 (8): 541–7, 1997.CrossRefGoogle Scholar
  379. 379.
    Somjen D. Binderman I. Berger E. Harell A. Bone remodelling induced by physical stress is prostaglandin E2 mediated. Biochimica et Biophysica Acta. 627 (1): 91–100, 1980.CrossRefGoogle Scholar
  380. 380.
    Sporn MB. Roberts AB. Transforming growth factor-beta. Multiple actions and potential clinical applications. JAMA. 262 (7): 938–41, 1989.CrossRefGoogle Scholar
  381. 381.
    Stashenko P. Dewhirst FE. Peros WJ. Kent RL. Ago JM. Synergistic interactions between interleukin 1, tumor necrosis factor, and lymphotoxin in bone resorption. Journal of Immunology. 138 (5): 1464–8, 1987.Google Scholar
  382. Steinberg ME. Brighton CT. Bands RE. Hartman KM. Capacitive coupling as an adjunctive treatment for avascular necrosis. Clinical Orthopaedics & Related Research. (261): 11–8, 1990.Google Scholar
  383. 383.
    Suzuki HK. Mathews A. Two-color fluorescent labeling of mineralizing tissues with tetracycline and 2,4-bis[N,N’-di-(carbomethyl)aminomethyl] fluorescein. Stain Technology. 41 (1): 57–60, 1966.Google Scholar
  384. 384.
    Tabrah F. Hoffmeier M. Gilbert F Jr. Batkin S. Bassett CA. Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). Journal of Bone & Mineral Research. 5 (5): 437–42, 1990.CrossRefGoogle Scholar
  385. 385.
    Tabrah FL. Ross P. Hoffmeier M. Gilbert F Jr. Clinical report on long- term bone density after short-term EMF application. Bioelectromagnetics. 19 (2): 75–8, 1998.CrossRefGoogle Scholar
  386. 386.
    Takahashi N. Akatsu T. Sasaki T. Nicholson GC. Moseley JM. Martin TJ. Suda T. Induction of calcitonin receptors by 1 alpha, 25-dihydroxyvitamin D3 in osteoclast-like multinucleated cells formed from mouse bone marrow cells. Endocrinology. 123 (3): 1504–10, 1988.CrossRefGoogle Scholar
  387. 387.
    Tashjian AH Jr. Voelkel EF. Lazzaro M. Goad D. Bosma T. Levine L. Tumor necrosis factor-alpha (cachectin) stimulates bone resorption in mouse calvaria via a prostaglandin-mediated mechanism. Endocrinology 120 (5): 2029–2036, 1987.CrossRefGoogle Scholar
  388. 388.
    Tsai CL. Chang WH. Liu TK. Wu KH. Additive effects of prostaglandin E2 and pulsed electromagnetic fields on fracture healing. Chinese Journal of Physiology. 34 (2): 201–11, 1991.Google Scholar
  389. Wahlstrom O. Stimulation of fracture healing with electromagnetic fields of extremely low frequency (EMF of ELF). Clinical Orthopaedics & Related Research. (186): 293–301, 1984.Google Scholar
  390. 390.
    Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalography & Clinical Neurophysiology. 108 (1): 1–16, 1998.MathSciNetGoogle Scholar
  391. 391.
    Watson J. The electrical stimulation of bone healing. Proceedings IEEE. 67: 1339–51, 1979.CrossRefGoogle Scholar
  392. 392.
    Welch RD. Johnston CE 2d. Waldron MJ. Poteet B. Intraosseous infusion of prostaglandin E2 in the caprine tibia. Journal of Orthopaedic Research. 11 (1): 110–21, 1993.CrossRefGoogle Scholar
  393. 393.
    Wiesmann H. Hartig M. Stratmann U. Meyer U. Joos U. Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochimica et Biophysica Acta. 1538 (1): 28–37, 2001.CrossRefGoogle Scholar
  394. 394.
    Wrana JL. Maeno M. Hawrylyshyn B. Yao KL. Domenicucci C. Sodek J. Differential effects of transforming growth factor-beta on the synthesis of extracellular matrix proteins by normal fetal rat calvarial bone cell populations. Journal of Cell Biology. 106 (3): 915–24, 1988.CrossRefGoogle Scholar
  395. 395.
    Yang RS. Chang WH. Liu TK. Liu HC. Clinical Evaluation of Nonunion and Delayed Union by a Specific Parameter Electrical Stimulation. JJBERS. 8: 117–25, 1994.Google Scholar
  396. 396.
    Yonemori K. Matsunaga S. Ishidou Y. Maeda S. Yoshida H. Early effects of electrical stimulation on osteogenesis. Bone. 19 (2): 173–80, 1996.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Walter H. Chang
  • Kyle T. Chang
  • Jimmy Li

There are no affiliations available

Personalised recommendations