Advertisement

Impacts of Canopy Internal Gradients on Carbon and Water Exchange of Beech and Oak Trees

  • S. Fleck
  • M. Schmidt
  • B. Köstner
  • W. Faltin
  • J. D. Tenhunen
Part of the Ecological Studies book series (ECOLSTUD, volume 172)

Abstract

Identifying the relevance of forest structure for stand photosynthesis and transpiration is one of the remaining challenges in plant physiological ecology. While leaves and their stomata are the causal agents of stand transpiration and canopy conductance, and their position and orientation are known to be decisive for their gas-exchange contribution, the spatial distribution pattern of leaves inside a forest cannot yet be considered in stand gas-exchange models. Canopy conductance of a mature tree is created by the conductances of about 1011 stomata (Larcher 2001; Fleck 2002, p. 49) which act depending on their local micrometeorological conditions (light, humidity). A process-oriented representation of forest canopy structures in stand gas-exchange models is, thus, still hindered by the enormous complexity of canopies, which makes it nearly impossible to assess and model them in detail.

Keywords

Leaf Area Transpiration Rate Vapor Pressure Deficit Beech Tree Canopy Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkin OK, Evans JR, Ball MC, Lambers H, Pons TL (2000) Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance. Plant Physiol 122:915–923PubMedCrossRefGoogle Scholar
  2. Baldocchi D, Collineau S (1994) The physical nature of solar radiation in heterogeneous canopies: spatial and temporal attributes. In: Caldwell MM, Pearcy RW (eds) Physiological ecology. A series of monographs, texts, and treatises: exploitation of environmental heterogeneity by plants. Ecophysiological processes above- and belowground. Academic Press, San DiegoGoogle Scholar
  3. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J (ed) Progress in photosynthesis research. Proc 7th Int Photosynthesis Congress, vol 4. Martinus Nijhoff, DordrechtGoogle Scholar
  4. Bartelink HH (1997) Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Ann Sci For 54:39–50CrossRefGoogle Scholar
  5. Bauer G, Schulze E-D, Mund M (1997) Nutrient contents and concentrations in relation to growth of Picea abies and Vagus sylvatica along a European transect. Tree Physiol 17:777–786PubMedCrossRefGoogle Scholar
  6. Burger H (1945) Holz, Blattmenge und Zuwachs — die Buche. Mitt Schweiz Anst Forstl Versuchswesen 26:419–468Google Scholar
  7. Burger H (1947) Die Eiche. Mitt Schweiz Anst Forstl Versuchswesen 25:211–279Google Scholar
  8. Campbell GS, Norman JM (1989) The description and measurement of plant canopy structure. In: Russell G, Marshall B, Jarvis PG (eds) Society for Experimental Biology seminar series, vol 31. Plant canopies: their growth, form and function. Cambridge University Press, CambridgeGoogle Scholar
  9. Cescatti A (1997) Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms. Ecol Model 101:263–274CrossRefGoogle Scholar
  10. De Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557CrossRefGoogle Scholar
  11. Falge E (1997) Die Bedeutung der Kronendachtranspiration von Fichtenbeständen (Picea abies (L.) Karst.) mit unterschiedlichen Modellierungsansätzen. Bayreuther Forum Ökol 48:549–550Google Scholar
  12. Faltin W (2004) Scaling up water and CO2 fluxes of forested areas from stand to footprint level by means of an individual-based 3D model. Dissertation, University of Bayreuth, GermanyGoogle Scholar
  13. Farquhar GD, von Caemmerer S (1982) Modeling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, 12B. Physiological plant ecology, vol 2. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. Fleck S (2002) Integrated analysis of relationships between 3D-structure, leaf photosynthesis, and branch transpiration of mature Vagus sylvatica and Quercus petraea trees in a mixed forest stand. Bayreuther Forum Ökol 97Google Scholar
  15. Godin C (2000) Representing and encoding plant architecture: a review. Ann For Sci 57(5/6):413–438CrossRefGoogle Scholar
  16. Harley PC, Tenhunen JD (1991) Modeling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ (ed) CS A special publication, no 19. Modeling crop photosynthesis — from biochemistry to canopy. American Society of Agronomy and Crop Science Society of America, MadisonGoogle Scholar
  17. Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton in elevated CO2. Plant Cell Environ 15:271–282CrossRefGoogle Scholar
  18. Jarvis PG (1995) Scaling processes and problems. Plant Cell Environ 8:1079–1089CrossRefGoogle Scholar
  19. Kazda M, Salzer J, Reiter I (2000) Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Vraxinus angustifolia and Tilia cordata flood plain forest. Tree Physiol 20:1029–1037PubMedCrossRefGoogle Scholar
  20. Krauss HH, Heinsdorf D (1996) Herleitung von Trockenmassen und Nährstoffspeicherungen in Buchenbeständen. Forschungsbericht im Auftrag der Landes-forstverwaltung Brandenburg, Forstliche Forschungsanstalt Eberswalde. Forstliche Forschungsanstalt Eberswalde, Eberswalde, GermanyGoogle Scholar
  21. Kull O, Niinemets Ü (1993) Variation in leaf morphometry and nitrogen concentration in Betula pendula Roth., Corylus avellana L. and Lonicera xylosteum L. Tree Physiol 12:311–318PubMedCrossRefGoogle Scholar
  22. Kurth W, Sloboda B (1999) Tree and stand architecture and growth described by formal grammars. I. Non-sensitive trees. II. Sensitive trees and competition. J For Sci 45:16–30/53–63Google Scholar
  23. Larcher W (2001) Ökophysiologie der Pflanzen. Ulmer, StuttgartGoogle Scholar
  24. Le Roux X, Grand S, Dreyer E, Daudet F (1999) Parameterization and testing of a biochemically based photosynthesis model for walnut (Juglans regia) trees and seedlings. Tree Physiol 19:481–492PubMedCrossRefGoogle Scholar
  25. Leuschner C (1998) Mechanismen der Konkurrenzüberlegenheit der Rotbuche. Ber Reinhard-Tüxen-Gesellsch 10:5–18Google Scholar
  26. Martin JG, Kloeppel BD, Schaefer TL, Kimbler DL, McNulty SG (1998) Aboveground bio-mass and nitrogen allocation of ten deciduous southern Appalachian tree species. Can J For Res 28:1648–1659CrossRefGoogle Scholar
  27. Medlyn BE, Badeck FW, de Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, de Angelis P, Forstreuter M, Jach ME, Kellomäki ME, Laitat E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B, Wang K, Jarvis PG (1999) Effects of elevated CO2 on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ 22:1475–1495CrossRefGoogle Scholar
  28. Niinemets Ü, Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer sac-charum. Plant Cell Environ 20:845–866CrossRefGoogle Scholar
  29. Pellinen P (1986) Biomasseuntersuchungen im Kalkbuchenwald. Dissertation, Universität Göttingen, GermanyGoogle Scholar
  30. Porte A, Loustau D (1998) Variability of the photosynthetics of mature needles within the crown of a 25-year-old Pinus pinaster. Tree Physiol 18:223–232PubMedCrossRefGoogle Scholar
  31. Rogers R, Hinckley TM (1979) Foliar weight and area related to current sapwood area in oak. For Sei 25:298–303Google Scholar
  32. Saito H, Kakubari Y (1999) Spatial and seasonal variations in photosynthetic properties within a beech (Fagus crenata Blume) crown. J For Res 4:27–34CrossRefGoogle Scholar
  33. Schulze E-D, Küppers M, Matyssek R (1986) The roles of carbon balance and branching pattern in the growth of woody species. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 585–602Google Scholar
  34. Schulze E-D, Kelliher FM, Körner C, Lloyd J, Leuning R (1994) Relationships among maximum stomatal conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annu Rev Ecol Syst 25:629–660CrossRefGoogle Scholar
  35. Tanaka T, Yamaguchi J, Takeda Y (1998) Measurement of forest canopy structure with a laser plane range-finding method — development of a measurement system and applications to real forests. Agric For Meteorol 91(3–4): 149–160CrossRefGoogle Scholar
  36. Van den Burg J (1990) Foliar analysis for determination of tree nutrient status — a complication of literature data. “De Dorschkamp”, Institute for Forestry and Urban Ecology, Wageningen, the NetherlandsGoogle Scholar
  37. Wrzesinsky T, Klemm O (2000) Summertime fog chemistry at a mountainous site in central Europe. Atmos Environ 34:1487–1496CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • S. Fleck
  • M. Schmidt
  • B. Köstner
  • W. Faltin
  • J. D. Tenhunen

There are no affiliations available

Personalised recommendations