Atmospheric and Structural Controls on Carbon and Water Relations in Mixed-Forest Stands of Beech and Oak

  • B. Köstner
  • M. Schmidt
  • E. Falge
  • S. Fleck
  • J. D. Tenhunen
Part of the Ecological Studies book series (ECOLSTUD, volume 172)


The natural vegetation of central Europe is dominated by European beech (Fagus sylvatica) increasingly mixed with pedunculate oak (Quercus robur) in dry lowlands and sessile oak (Quercus petraea) in lower montane regions (Walter and Breckle 1994). Companion species are hornbeam (Carpinus betu-lus) and lime (Tilia platyphyllos, T. cordata). Since many tree species disappeared during the glacial periods, even natural deciduous forests in central Europe are relatively species-poor (Ellenberg 1982; Mayer 1984). Within broad-leaved species, forest management has concentrated on oak and beech for many years, even though the variety of species used for wood production is now slightly increasing. Today, additional benefits of forest functions like air and water quality, flux control (nitrogen, carbon), biodiversity and recreation are considered. More mixed-deciduous forests are being re-established, now reaching an area of 44% in Germany (Smaltschinski 1990; Krüger et al. 1994). Despite their increasing importance, comparably little information on the physiology and ecology of mixed stands is available. Ecological benefits expected from mixed-forest stands include higher structural diversity, higher physical stability, higher diversification in the use of resources, higher resistance to herbivory and pests, and more balanced response to environmental change (e.g., Cannel et al. 1992; Kelty et al. 1992; Larson 1992; Thomasius 1992; Pretzsch 2003).


Leaf Area Index Mixed Stand Sapwood Area Stand Basal Area Quercus Petraea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alsheimer M, Köstner B, Falge E, Tenhunen JD (1998) Temporal and spatial variation in transpiration of Norway spruce stands within a forested catchment of the Fichtelgebirge, Germany. Ann Sci For 55:103–124CrossRefGoogle Scholar
  2. Aranda I, Gil L, Pardos JA (2000) Water relations and gas exchange in Vagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees 14:344–352CrossRefGoogle Scholar
  3. Aussenac G, Ducrey M (1977) Etude bioclimatique d’une futaie feuillue (Fagus sylvatica L. et Quercus sessiliflora Salisb.) de l’Est de la France. I. Analyse des profils microclimatiques et des caractéristiques anatomiques et morphologiques de l’appareil foliaire. Ann Sci For 34(4):265–284CrossRefGoogle Scholar
  4. Backes K (1996) Der Wasserhaushalt vier verschiedener Baumarten der Heide-Wald-Sukzession. Dissertation, Göttingen, GermanyGoogle Scholar
  5. Baldocchi DD, Amthor JS (2001) Canopy photosynthesis: history, measurements, and models. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, pp 9–31CrossRefGoogle Scholar
  6. Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69(5):1331–1340CrossRefGoogle Scholar
  7. Baldocchi DD, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davies K, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Mahli Y, Meyers T, Munger W, Oechel W, Paw U K, Pilegaard K, Schmid H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull Am Meteor Soc 82:2415–2435CrossRefGoogle Scholar
  8. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Proc 7th Int Congr on Photosynthesis, Providence, Rhode Island, 10–15 Aug 1986. Nijhoff, Dordrecht, pp 221–224Google Scholar
  9. Beyschlag W, Ryel RJ, Caldwell MM (1995) Photosynthesis of vascular plants: assessing canopy photosynthesis by means of simulation models. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer study edition. Springer, Berlin Heidelberg New York, pp 409–430CrossRefGoogle Scholar
  10. Binkley D, Stape JL, Ryan MR, Barnard HR, Fownes J (2002) Age-related decline in forest ecosystem growth: an individual-tree, stand-structure hypothesis. Ecosystems 5:58–67CrossRefGoogle Scholar
  11. Bonn S (2000) Konkurrenzdynamik in Buchen/Eichen-Mischbeständen und zu erwartende Modifikationen durch Klimaänderungen. Allg Forst J Ztg 171(5–6):81–88Google Scholar
  12. Breda N, Cochard H, Dreyer E, Granier A (1993) Water transfer in a mature oak stand (Quercus petraea): seasonal evolution and effects of a severe drought. Can J For Res 23:1136–1142CrossRefGoogle Scholar
  13. Burrows LE (1980) Differentiating sapwood, heartwood, and pathological wood in live mountain beech. Protection forestry report 172. New Zealand Forest Service, Forest Research Institute, Christchurch, New ZealandGoogle Scholar
  14. Businger JA (1956) Some remarks on Penman’s equation for the evaporation. Neth J Agric Sci 4:77–80Google Scholar
  15. Cannell NGR, Malcolm DC, Robertson PA (1992) The ecology of mixed species stands of trees. Blackwell, OxfordGoogle Scholar
  16. Clearwater MJ, Meinzer FC, Andrade JL, Goldstein G, Holbrook NM (1999) Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiol 19:681–687PubMedCrossRefGoogle Scholar
  17. Ehman JL, Schmid HP, Grimmond CSB, Randolph JC, Hanson PJ, Wayson CA, Cropley FD (2002) An initial intercomparison of micrometeorological and ecological inventory estimates of carbon exchange in a mid-latitude deciduous forest. Global Change Biol 8:575–589CrossRefGoogle Scholar
  18. Ellenberg H (1982) Vegetation Mitteleuropas mit den Alpen. Ulmer, StuttgartGoogle Scholar
  19. Ewers BE, Oren R (2000) Analyses of assumptions and errors in the calculation of stom-atal conductance from sap flux measurements. Tree Physiol 20(9):579–589PubMedCrossRefGoogle Scholar
  20. Falge E, Tenhunen JD, Ryel R, Alsheimer, Köstner B (2000) Modelling age- and density-related gas exchange of Picea abies canopies in the Fichtelgebirge, Germany. Ann Sci For 57:229–243CrossRefGoogle Scholar
  21. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefGoogle Scholar
  22. Felbermeier B (1994) Arealveränderungen der Buche infolge von Klimaänderungen. Allg Forstz 49(5):222–224Google Scholar
  23. Fleck S (2002) Integrated analysis of relationships between 3D-structure, leaf photosynthesis, and branch transpiration of mature Fagus sylvatica and Quercus petraea trees in a mixed forest stand. Bayreuther Forum Ökol 97:183Google Scholar
  24. Fleck S, Schmidt M (2001) Biometrie, Kronenarchitektur, Blattphotosynthese und Kronendachtranspiraiton von Buche und Eiche im Einzugsgebiet ‘Steinkreuz’. In: Gerstberger P (ed) Waldökosystemforschung in Nordbayern. Die BITÖK-Untersuchungs-flächen im Fichtelgebirge und Steigerwald. Bayreuther Forum Ökol 90:137–146Google Scholar
  25. Franz F, Röhle H, Meyer F (1993) Wachstumsgang und Ertragsleistung der Buche. Allg Forstz 6:262–267Google Scholar
  26. Geiger R (1961) Das Klima der bodennahen Luftschicht. Vieweg, BraunschweigGoogle Scholar
  27. Goldberg V, Baums A, Häntzschel J (2003) Klima, Boden und Landnutzung. In: Bernhofer Ch (ed) Exkursions- und Praktikumsführer Tharandter Wald. Tharandter Klimaprotokolle 6:15–26Google Scholar
  28. Granier A (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann Sci For 42:81–88CrossRefGoogle Scholar
  29. Granier A, Biron P, Bréda N, Pontailler JY, Saugier B (1996a) Transpiration of trees and forest stands: short and long-term monitoring using sapflow methods. Global Change Biol 2:265–274CrossRefGoogle Scholar
  30. Granier A, Biron P, Köstner B, Gay LW, Najjar G (1996b) Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine. Theor Appl Clim 53:115–122CrossRefGoogle Scholar
  31. Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100:291–308CrossRefGoogle Scholar
  32. Granier A, Aubinet M, Epron D, Falge E, Gudmundsson J, Jensen NO, Köstner B, Matteucci G, Pilegaard K, Schmidt M, Tenhunen J (2003) Deciduous forests: carbon and water fluxes, balances and ecophysiological determinants. In: Valentini R (ed) Fluxes of carbon, water and energy of European forests. Ecological studies, vol 163. Springer, Berlin Heidelberg New York, pp 55–70CrossRefGoogle Scholar
  33. Habermehl A, Ridder H-W (1993) Anwendungen der mobilen Computer-Tomographie zur zerstörungsfreien Untersuchung des Holzkörpers von stehenden Bäumen. Holz Roh Werkstoff 51:1–6CrossRefGoogle Scholar
  34. Hagemeier M (2002) Funktionale Kronenarchitektur mitteleuropäischer Baumarten am Beispiel von Hängebirke, Waldkiefer, Traubeneiche, Hainbuche, Winterlinde und Rotbuche. Diss Bot 361:154Google Scholar
  35. Harley PC, Tenhunen JD (1991) Modeling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ, Loomis RS (eds) Modeling crop photosynthesis-from biochemistry to canopy. CSSA Spec Publ 19, Sect 2. American Society of Agronomy and Crop Science Society of America, Madison, pp 17–39Google Scholar
  36. Hillis WE (1987) Heartwood and tree exudates. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  37. Hofmann W (1968) Vitalität der Rotbuche und Klima in Mainfranken. Feddes Repertorium 78(1–3):135–137Google Scholar
  38. Horstmann K (1984) Untersuchungen zum Massenwechsel des Eichenwicklers, Tortrix viridana L. (Lepidoptera, Tortricidae), in Unterfranken. Z Angew Entomol 98:73–95CrossRefGoogle Scholar
  39. Jarvis PG, Stewart J (1979) Evaporation of water from plantation forests. In: Ford ED, Malcolm DC, Atterson J (eds) The ecology of even-aged forest plantations. In: Proc Meeting Division I. IUFRO, Edinburgh, pp 327–349Google Scholar
  40. Kelliher FM, Leuning R, Raupach MR, Schulze E-D (1995) Maximum conductances for evaporation from global vegetation types. Agric For Meteorol 73:1–16CrossRefGoogle Scholar
  41. Kelty MJ (1992) Comparative productivity of monocultures and mixed-species stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer, Dordrecht, pp 125–141CrossRefGoogle Scholar
  42. Kelty MJ, Larson BC, Oliver CD (1992) The ecology and silviculture of mixed-species forests. Kluwer, DordrechtCrossRefGoogle Scholar
  43. Klöck W (1980) 30 Jahre Standortserkundung in Unterfranken. Allg Forstz 16:431Google Scholar
  44. Körner C (1996) The response of complex multispecies systems to elevated CO2. In: Walker B, Steffen W (eds) Global change and terrestrial ecosystems. IGBP Book Ser 2. Cambridge University Press, Cambridge, pp 20–42Google Scholar
  45. Köstner B (2001) Evaporation and transpiration from coniferous and broad-leaved forests in central Europe — relevance of patch-level studies for spatial scaling. Meteorol Atmos Phys 76:69–82CrossRefGoogle Scholar
  46. Köstner BMM, Schulze E-D, Kelliher, FM, Hollinger DY, Byers JN, Hunt JE, McSeveny TM, Meserth R, Weir PL (1992) Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements. Oecologia 91:350–359CrossRefGoogle Scholar
  47. Köstner B, Falge EM, Alsheimer M, Geyer R, Tenhunen JD (1998a) Estimating tree canopy water use via xylem sapflow in an old Norway spruce forest and a comparison with simulation-based canopy transpiration estimates. Ann Sci For 55:125–139CrossRefGoogle Scholar
  48. Köstner B, Granier A, Cermák J (1998b) Sap flow measurements in forest stands: methods and uncertainties. Ann Sci For 55:13–27CrossRefGoogle Scholar
  49. Köstner B, Tenhunen JD, Alsheimer M, Wedler M, Scharfenberg HJ, Zimmermann R, Falge E, Joss U (2001) Controls on evapotranspiration in a spruce forest catchment of the Fichtelgebirge. In: Tenhunen JD, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape management in central Europe. Ecological studies 147. Springer, Berlin Heidelberg New York, pp 379–415Google Scholar
  50. Köstner B, Falge E, Tenhunen JD (2002) Age-related effects on leaf area/sapwood area relationships, canopy transpiration, and carbon gain of Picea abies stands in the Fichtelgebirge/Germany. Tree Physiol 22:567–574PubMedCrossRefGoogle Scholar
  51. Krüger S, Mößmer R, Bäumler A (1994) Der Wald in Bayern. Ergebnisse der Bun-deswaldinventur 1986–1990. Landesanstalt für Wald und Forstwirtschaft, FreisingGoogle Scholar
  52. Larson BC (1992) Pathways of development in mixed-species stands. In: Kelty MJ (ed) The ecology and silviculture of mixed-species forests. Kluwer, Dordrecht, pp 3–10CrossRefGoogle Scholar
  53. Leuschner C (1993) Patterns of soil water depletion under coexisting oak and beech trees in a mixed stand. Phytocoenologia 23:19–33Google Scholar
  54. Leuschner C (2000) Changes in forest ecosystem function with succession in the Lüneburger Heide. In: Tenhunen JD, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape management in central Europe. Ecological studies 147. Springer, Berlin Heidelberg New York, pp 517–568Google Scholar
  55. Magnani F, Mencuccini M, Grace J (2000) Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant Cell Environ 23:251–263CrossRefGoogle Scholar
  56. Mayer (1984) Europäische Wälder. Uni-Taschenbücher, StuttgartGoogle Scholar
  57. McDowell N, Barnard H, Bond BJ, Hinckley T, Hubbard R, Ishii H, Köstner B, Meinzer, FC, Marshall JD, Magnani F, Phillips N, Ryan MG, Whitehead D (2002) The relationship between tree height and leaf area:sapwood area ratio. Oecologia 132:12–20CrossRefGoogle Scholar
  58. McNaughton KG, Jarvis PG (1983) Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski TT (ed) Water deficits and plant growth, vol 7. Academic Press, New York, pp 1–47Google Scholar
  59. Monteith JL (1965) Evaporation and environment. In: Fogg GE (ed) The state and movement of water in living organisms. Symp Soc Exp Biol 19. Academic Press, New York, pp 205–234Google Scholar
  60. Monteith JL (1975) Vegetation and the atmosphere, vols 1, 2. Academic Press, LondonGoogle Scholar
  61. Monteith JL, Szeicz G, Waggoner PE (1965) The measurement and control of stomatal resistance in the field. J Appl Ecol 2:345–355CrossRefGoogle Scholar
  62. Monteith JL, Unsworth MH (1990) Principles of environmental physics, 2nd edn. Arnold, LondonGoogle Scholar
  63. Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci USA 98(26): 14784–14789PubMedCrossRefGoogle Scholar
  64. Niinemets Ü (1995) Distribution of foliar carbon and nitrogen across the canopy of Vagus sylvatica: adaptation to a vertical light gradient. Acta Oecol 16:525–541Google Scholar
  65. Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, LondonGoogle Scholar
  66. Oliver CD (1992) Similarities of stand structures and stand development processes throughout the world — some evidence and applications to silviculture through adaptive management. In: Kelty MJ (ed) The ecology and silviculture of mixed-species forests. Kluwer, Dordrecht, pp 11–26CrossRefGoogle Scholar
  67. Peck A, Mayer H (1996) Einfluß von Bestandesparametern auf die Verdunstung von Wäldern. Forstw Centralbl 115:1–9CrossRefGoogle Scholar
  68. Phillips NG, Ryan MG, Bond BJ, McDowell NG, Hinckley TM, Cerrnak J (2003) Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiol 23:237–245PubMedCrossRefGoogle Scholar
  69. Pretzsch H (1993) Struktur und Leistung naturgemäß bewirtschafteter Eichen-Buchen-Mischbestände in Unterfranken. Allg Forstz 6:281–284Google Scholar
  70. Pretzsch H (2003) Diversität und Produktivität von Wäldern. Allg Forst J Ztg 174(5–6): 88–98Google Scholar
  71. Raschi A, Tognetti R, Ridder HW, Béres C, Fenyvesi A (1995) The use of computer tomography in the study of pollution effects on oak trees. Agric Med Spec Vol 298–306Google Scholar
  72. Roy J (2001) How does biodiversity control primary productivity? In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, pp 169–186CrossRefGoogle Scholar
  73. Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bio Science 47:235–242Google Scholar
  74. Ryan MG, Binkley D, Fowness JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262CrossRefGoogle Scholar
  75. Ryel RJ, Barnes PW, Beyschlag W, Caldwell MM, Flint SD (1990) Plant competition for light analyzed with a multispecies canopy model. I. Model development and influence of enhanced UV-B conditions on photosynthesis in mixed wheat and wild oat canopies. Oecologia 82:304–310CrossRefGoogle Scholar
  76. Schäfer K (1997) Wassernutzung von Vagus syvatica und Quercus petraea im Wassereinzugsgebiet Steinkreuz im Steigerwald, Bayern. Thesis, University of Bayreuth, GermanyGoogle Scholar
  77. Schmidt M, Köstner B, Tenhunen JD (2000) Bedeutung von Lichtklima und Blattflächenentwicklung für die Wasser- und CO2-Flüsse des Kronendaches entlang eines Baumarten-Struktur-Gradienten im Steigerwald. BITÖK Forschungsbericht 1998–2000. Bayreuther Forum Ökol 78:35–46Google Scholar
  78. Schulte A, Böswald K, Joosten R (2001) Weltforstwirtschaft nach Kyoto. Wald und Holz als Kohlenstoffspeicher und regenerativer Energieträger. Shaker, AachenGoogle Scholar
  79. Schulze E-D (2000) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies 142. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  80. Schulze ED, Kelliher FM, Körner C, Lloyd J, Leuning R (1994) Relationships between plant nitrogen nutrition, carbon assimilation rate, and maximum stomatal and ecosystem surface conductances for evaporation: a global ecology scaling exercise. Annu Rev Ecol Sys 25:629–660CrossRefGoogle Scholar
  81. Shuttleworth WJ (1989) Micrometeorology of temperate and tropical forests. Philos Trans R Soc Lond Ser B 324:299–334CrossRefGoogle Scholar
  82. Smaltschinski T (1990) Mischbestände in der Bundesrepublik Deutschland. Forstarchiv 61(4):137–140Google Scholar
  83. Sperber G, Regher A (1983) Vorratspflege in Unterfranken am Beispiel des Steigerwaldes. Allg Forstz 39:1020–1024Google Scholar
  84. Spiecker H (1983) Durchforstungsansätze bei Eiche unter besonderer Berücksichtigung des Dickenwachstums. Allg Forst J Ztg 154(2):21–36Google Scholar
  85. Tenhunen JD, Falge E, Ryel R, Manderscheid B, Peters K, Ostendorf B, Joss U, Lischeid G (2001) A flux model hierarchy for spruce forest ecosystems. In: Tenhunen JD, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape management in central Europe. Ecological studies 147. Springer, Berlin Heidelberg New York, pp 417–462CrossRefGoogle Scholar
  86. Thomas FM, Blank R (1996) The effect of excess nitrogen and of insect defoliation on the frost hardiness of bark tissue of adult oaks. Ann Sci For 53:395–406CrossRefGoogle Scholar
  87. Thomas FM, Kiehne U (1995) The nitrogen status of oak stands in northern Germany and its role in oak decline. In: Nilsson LO, Hüttl RF, Johansson UT (eds) Nutrient uptake and cycling in forest ecosystems. Kluwer, Dordrecht, pp 671–676CrossRefGoogle Scholar
  88. Thomasius H (1992) Prinzipien eines Ökologisch orientierten Waldbaus. Forstw Centalbl 111:141–155CrossRefGoogle Scholar
  89. Valentini R (2003) Fluxes of carbon, energy and water of European forests. Ecological studies 163. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  90. Walter H, Breckle S-W (1994) Ökologie der Erde, vol 3. Fischer, StuttgartGoogle Scholar
  91. Waring RH, Running SW (1998) Forest ecosystems. Analysis at multiple scales. Academic Press, San DiegoGoogle Scholar
  92. Welß W (1985) Waldgesellschaften im nördlichen Steigerwald. Diss Bot 83:174Google Scholar
  93. Wilson KB, Baldocchi DD, Hanson PJ (2001) Leafage affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant Cell Environ 24:571–583CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • B. Köstner
  • M. Schmidt
  • E. Falge
  • S. Fleck
  • J. D. Tenhunen

There are no affiliations available

Personalised recommendations