Skip to main content

Atmospheric and Structural Controls on Carbon and Water Relations in Mixed-Forest Stands of Beech and Oak

  • Chapter
Biogeochemistry of Forested Catchments in a Changing Environment

Part of the book series: Ecological Studies ((ECOLSTUD,volume 172))

Abstract

The natural vegetation of central Europe is dominated by European beech (Fagus sylvatica) increasingly mixed with pedunculate oak (Quercus robur) in dry lowlands and sessile oak (Quercus petraea) in lower montane regions (Walter and Breckle 1994). Companion species are hornbeam (Carpinus betu-lus) and lime (Tilia platyphyllos, T. cordata). Since many tree species disappeared during the glacial periods, even natural deciduous forests in central Europe are relatively species-poor (Ellenberg 1982; Mayer 1984). Within broad-leaved species, forest management has concentrated on oak and beech for many years, even though the variety of species used for wood production is now slightly increasing. Today, additional benefits of forest functions like air and water quality, flux control (nitrogen, carbon), biodiversity and recreation are considered. More mixed-deciduous forests are being re-established, now reaching an area of 44% in Germany (Smaltschinski 1990; Krüger et al. 1994). Despite their increasing importance, comparably little information on the physiology and ecology of mixed stands is available. Ecological benefits expected from mixed-forest stands include higher structural diversity, higher physical stability, higher diversification in the use of resources, higher resistance to herbivory and pests, and more balanced response to environmental change (e.g., Cannel et al. 1992; Kelty et al. 1992; Larson 1992; Thomasius 1992; Pretzsch 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alsheimer M, Köstner B, Falge E, Tenhunen JD (1998) Temporal and spatial variation in transpiration of Norway spruce stands within a forested catchment of the Fichtelgebirge, Germany. Ann Sci For 55:103–124

    Article  Google Scholar 

  • Aranda I, Gil L, Pardos JA (2000) Water relations and gas exchange in Vagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees 14:344–352

    Article  Google Scholar 

  • Aussenac G, Ducrey M (1977) Etude bioclimatique d’une futaie feuillue (Fagus sylvatica L. et Quercus sessiliflora Salisb.) de l’Est de la France. I. Analyse des profils microclimatiques et des caractéristiques anatomiques et morphologiques de l’appareil foliaire. Ann Sci For 34(4):265–284

    Article  Google Scholar 

  • Backes K (1996) Der Wasserhaushalt vier verschiedener Baumarten der Heide-Wald-Sukzession. Dissertation, Göttingen, Germany

    Google Scholar 

  • Baldocchi DD, Amthor JS (2001) Canopy photosynthesis: history, measurements, and models. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, pp 9–31

    Chapter  Google Scholar 

  • Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69(5):1331–1340

    Article  Google Scholar 

  • Baldocchi DD, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davies K, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Mahli Y, Meyers T, Munger W, Oechel W, Paw U K, Pilegaard K, Schmid H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull Am Meteor Soc 82:2415–2435

    Article  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Proc 7th Int Congr on Photosynthesis, Providence, Rhode Island, 10–15 Aug 1986. Nijhoff, Dordrecht, pp 221–224

    Google Scholar 

  • Beyschlag W, Ryel RJ, Caldwell MM (1995) Photosynthesis of vascular plants: assessing canopy photosynthesis by means of simulation models. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer study edition. Springer, Berlin Heidelberg New York, pp 409–430

    Chapter  Google Scholar 

  • Binkley D, Stape JL, Ryan MR, Barnard HR, Fownes J (2002) Age-related decline in forest ecosystem growth: an individual-tree, stand-structure hypothesis. Ecosystems 5:58–67

    Article  Google Scholar 

  • Bonn S (2000) Konkurrenzdynamik in Buchen/Eichen-Mischbeständen und zu erwartende Modifikationen durch Klimaänderungen. Allg Forst J Ztg 171(5–6):81–88

    Google Scholar 

  • Breda N, Cochard H, Dreyer E, Granier A (1993) Water transfer in a mature oak stand (Quercus petraea): seasonal evolution and effects of a severe drought. Can J For Res 23:1136–1142

    Article  Google Scholar 

  • Burrows LE (1980) Differentiating sapwood, heartwood, and pathological wood in live mountain beech. Protection forestry report 172. New Zealand Forest Service, Forest Research Institute, Christchurch, New Zealand

    Google Scholar 

  • Businger JA (1956) Some remarks on Penman’s equation for the evaporation. Neth J Agric Sci 4:77–80

    Google Scholar 

  • Cannell NGR, Malcolm DC, Robertson PA (1992) The ecology of mixed species stands of trees. Blackwell, Oxford

    Google Scholar 

  • Clearwater MJ, Meinzer FC, Andrade JL, Goldstein G, Holbrook NM (1999) Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiol 19:681–687

    Article  PubMed  Google Scholar 

  • Ehman JL, Schmid HP, Grimmond CSB, Randolph JC, Hanson PJ, Wayson CA, Cropley FD (2002) An initial intercomparison of micrometeorological and ecological inventory estimates of carbon exchange in a mid-latitude deciduous forest. Global Change Biol 8:575–589

    Article  Google Scholar 

  • Ellenberg H (1982) Vegetation Mitteleuropas mit den Alpen. Ulmer, Stuttgart

    Google Scholar 

  • Ewers BE, Oren R (2000) Analyses of assumptions and errors in the calculation of stom-atal conductance from sap flux measurements. Tree Physiol 20(9):579–589

    Article  PubMed  Google Scholar 

  • Falge E, Tenhunen JD, Ryel R, Alsheimer, Köstner B (2000) Modelling age- and density-related gas exchange of Picea abies canopies in the Fichtelgebirge, Germany. Ann Sci For 57:229–243

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Felbermeier B (1994) Arealveränderungen der Buche infolge von Klimaänderungen. Allg Forstz 49(5):222–224

    Google Scholar 

  • Fleck S (2002) Integrated analysis of relationships between 3D-structure, leaf photosynthesis, and branch transpiration of mature Fagus sylvatica and Quercus petraea trees in a mixed forest stand. Bayreuther Forum Ökol 97:183

    Google Scholar 

  • Fleck S, Schmidt M (2001) Biometrie, Kronenarchitektur, Blattphotosynthese und Kronendachtranspiraiton von Buche und Eiche im Einzugsgebiet ‘Steinkreuz’. In: Gerstberger P (ed) Waldökosystemforschung in Nordbayern. Die BITÖK-Untersuchungs-flächen im Fichtelgebirge und Steigerwald. Bayreuther Forum Ökol 90:137–146

    Google Scholar 

  • Franz F, Röhle H, Meyer F (1993) Wachstumsgang und Ertragsleistung der Buche. Allg Forstz 6:262–267

    Google Scholar 

  • Geiger R (1961) Das Klima der bodennahen Luftschicht. Vieweg, Braunschweig

    Google Scholar 

  • Goldberg V, Baums A, Häntzschel J (2003) Klima, Boden und Landnutzung. In: Bernhofer Ch (ed) Exkursions- und Praktikumsführer Tharandter Wald. Tharandter Klimaprotokolle 6:15–26

    Google Scholar 

  • Granier A (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann Sci For 42:81–88

    Article  Google Scholar 

  • Granier A, Biron P, Bréda N, Pontailler JY, Saugier B (1996a) Transpiration of trees and forest stands: short and long-term monitoring using sapflow methods. Global Change Biol 2:265–274

    Article  Google Scholar 

  • Granier A, Biron P, Köstner B, Gay LW, Najjar G (1996b) Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine. Theor Appl Clim 53:115–122

    Article  Google Scholar 

  • Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100:291–308

    Article  Google Scholar 

  • Granier A, Aubinet M, Epron D, Falge E, Gudmundsson J, Jensen NO, Köstner B, Matteucci G, Pilegaard K, Schmidt M, Tenhunen J (2003) Deciduous forests: carbon and water fluxes, balances and ecophysiological determinants. In: Valentini R (ed) Fluxes of carbon, water and energy of European forests. Ecological studies, vol 163. Springer, Berlin Heidelberg New York, pp 55–70

    Chapter  Google Scholar 

  • Habermehl A, Ridder H-W (1993) Anwendungen der mobilen Computer-Tomographie zur zerstörungsfreien Untersuchung des Holzkörpers von stehenden Bäumen. Holz Roh Werkstoff 51:1–6

    Article  Google Scholar 

  • Hagemeier M (2002) Funktionale Kronenarchitektur mitteleuropäischer Baumarten am Beispiel von Hängebirke, Waldkiefer, Traubeneiche, Hainbuche, Winterlinde und Rotbuche. Diss Bot 361:154

    Google Scholar 

  • Harley PC, Tenhunen JD (1991) Modeling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ, Loomis RS (eds) Modeling crop photosynthesis-from biochemistry to canopy. CSSA Spec Publ 19, Sect 2. American Society of Agronomy and Crop Science Society of America, Madison, pp 17–39

    Google Scholar 

  • Hillis WE (1987) Heartwood and tree exudates. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Hofmann W (1968) Vitalität der Rotbuche und Klima in Mainfranken. Feddes Repertorium 78(1–3):135–137

    Google Scholar 

  • Horstmann K (1984) Untersuchungen zum Massenwechsel des Eichenwicklers, Tortrix viridana L. (Lepidoptera, Tortricidae), in Unterfranken. Z Angew Entomol 98:73–95

    Article  Google Scholar 

  • Jarvis PG, Stewart J (1979) Evaporation of water from plantation forests. In: Ford ED, Malcolm DC, Atterson J (eds) The ecology of even-aged forest plantations. In: Proc Meeting Division I. IUFRO, Edinburgh, pp 327–349

    Google Scholar 

  • Kelliher FM, Leuning R, Raupach MR, Schulze E-D (1995) Maximum conductances for evaporation from global vegetation types. Agric For Meteorol 73:1–16

    Article  Google Scholar 

  • Kelty MJ (1992) Comparative productivity of monocultures and mixed-species stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer, Dordrecht, pp 125–141

    Chapter  Google Scholar 

  • Kelty MJ, Larson BC, Oliver CD (1992) The ecology and silviculture of mixed-species forests. Kluwer, Dordrecht

    Book  Google Scholar 

  • Klöck W (1980) 30 Jahre Standortserkundung in Unterfranken. Allg Forstz 16:431

    Google Scholar 

  • Körner C (1996) The response of complex multispecies systems to elevated CO2. In: Walker B, Steffen W (eds) Global change and terrestrial ecosystems. IGBP Book Ser 2. Cambridge University Press, Cambridge, pp 20–42

    Google Scholar 

  • Köstner B (2001) Evaporation and transpiration from coniferous and broad-leaved forests in central Europe — relevance of patch-level studies for spatial scaling. Meteorol Atmos Phys 76:69–82

    Article  Google Scholar 

  • Köstner BMM, Schulze E-D, Kelliher, FM, Hollinger DY, Byers JN, Hunt JE, McSeveny TM, Meserth R, Weir PL (1992) Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements. Oecologia 91:350–359

    Article  Google Scholar 

  • Köstner B, Falge EM, Alsheimer M, Geyer R, Tenhunen JD (1998a) Estimating tree canopy water use via xylem sapflow in an old Norway spruce forest and a comparison with simulation-based canopy transpiration estimates. Ann Sci For 55:125–139

    Article  Google Scholar 

  • Köstner B, Granier A, Cermák J (1998b) Sap flow measurements in forest stands: methods and uncertainties. Ann Sci For 55:13–27

    Article  Google Scholar 

  • Köstner B, Tenhunen JD, Alsheimer M, Wedler M, Scharfenberg HJ, Zimmermann R, Falge E, Joss U (2001) Controls on evapotranspiration in a spruce forest catchment of the Fichtelgebirge. In: Tenhunen JD, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape management in central Europe. Ecological studies 147. Springer, Berlin Heidelberg New York, pp 379–415

    Google Scholar 

  • Köstner B, Falge E, Tenhunen JD (2002) Age-related effects on leaf area/sapwood area relationships, canopy transpiration, and carbon gain of Picea abies stands in the Fichtelgebirge/Germany. Tree Physiol 22:567–574

    Article  PubMed  Google Scholar 

  • Krüger S, Mößmer R, Bäumler A (1994) Der Wald in Bayern. Ergebnisse der Bun-deswaldinventur 1986–1990. Landesanstalt für Wald und Forstwirtschaft, Freising

    Google Scholar 

  • Larson BC (1992) Pathways of development in mixed-species stands. In: Kelty MJ (ed) The ecology and silviculture of mixed-species forests. Kluwer, Dordrecht, pp 3–10

    Chapter  Google Scholar 

  • Leuschner C (1993) Patterns of soil water depletion under coexisting oak and beech trees in a mixed stand. Phytocoenologia 23:19–33

    Google Scholar 

  • Leuschner C (2000) Changes in forest ecosystem function with succession in the Lüneburger Heide. In: Tenhunen JD, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape management in central Europe. Ecological studies 147. Springer, Berlin Heidelberg New York, pp 517–568

    Google Scholar 

  • Magnani F, Mencuccini M, Grace J (2000) Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant Cell Environ 23:251–263

    Article  Google Scholar 

  • Mayer (1984) Europäische Wälder. Uni-Taschenbücher, Stuttgart

    Google Scholar 

  • McDowell N, Barnard H, Bond BJ, Hinckley T, Hubbard R, Ishii H, Köstner B, Meinzer, FC, Marshall JD, Magnani F, Phillips N, Ryan MG, Whitehead D (2002) The relationship between tree height and leaf area:sapwood area ratio. Oecologia 132:12–20

    Article  Google Scholar 

  • McNaughton KG, Jarvis PG (1983) Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski TT (ed) Water deficits and plant growth, vol 7. Academic Press, New York, pp 1–47

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Fogg GE (ed) The state and movement of water in living organisms. Symp Soc Exp Biol 19. Academic Press, New York, pp 205–234

    Google Scholar 

  • Monteith JL (1975) Vegetation and the atmosphere, vols 1, 2. Academic Press, London

    Google Scholar 

  • Monteith JL, Szeicz G, Waggoner PE (1965) The measurement and control of stomatal resistance in the field. J Appl Ecol 2:345–355

    Article  Google Scholar 

  • Monteith JL, Unsworth MH (1990) Principles of environmental physics, 2nd edn. Arnold, London

    Google Scholar 

  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci USA 98(26): 14784–14789

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü (1995) Distribution of foliar carbon and nitrogen across the canopy of Vagus sylvatica: adaptation to a vertical light gradient. Acta Oecol 16:525–541

    Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London

    Google Scholar 

  • Oliver CD (1992) Similarities of stand structures and stand development processes throughout the world — some evidence and applications to silviculture through adaptive management. In: Kelty MJ (ed) The ecology and silviculture of mixed-species forests. Kluwer, Dordrecht, pp 11–26

    Chapter  Google Scholar 

  • Peck A, Mayer H (1996) Einfluß von Bestandesparametern auf die Verdunstung von Wäldern. Forstw Centralbl 115:1–9

    Article  Google Scholar 

  • Phillips NG, Ryan MG, Bond BJ, McDowell NG, Hinckley TM, Cerrnak J (2003) Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiol 23:237–245

    Article  PubMed  CAS  Google Scholar 

  • Pretzsch H (1993) Struktur und Leistung naturgemäß bewirtschafteter Eichen-Buchen-Mischbestände in Unterfranken. Allg Forstz 6:281–284

    Google Scholar 

  • Pretzsch H (2003) Diversität und Produktivität von Wäldern. Allg Forst J Ztg 174(5–6): 88–98

    Google Scholar 

  • Raschi A, Tognetti R, Ridder HW, Béres C, Fenyvesi A (1995) The use of computer tomography in the study of pollution effects on oak trees. Agric Med Spec Vol 298–306

    Google Scholar 

  • Roy J (2001) How does biodiversity control primary productivity? In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, pp 169–186

    Chapter  Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bio Science 47:235–242

    Google Scholar 

  • Ryan MG, Binkley D, Fowness JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262

    Article  Google Scholar 

  • Ryel RJ, Barnes PW, Beyschlag W, Caldwell MM, Flint SD (1990) Plant competition for light analyzed with a multispecies canopy model. I. Model development and influence of enhanced UV-B conditions on photosynthesis in mixed wheat and wild oat canopies. Oecologia 82:304–310

    Article  Google Scholar 

  • Schäfer K (1997) Wassernutzung von Vagus syvatica und Quercus petraea im Wassereinzugsgebiet Steinkreuz im Steigerwald, Bayern. Thesis, University of Bayreuth, Germany

    Google Scholar 

  • Schmidt M, Köstner B, Tenhunen JD (2000) Bedeutung von Lichtklima und Blattflächenentwicklung für die Wasser- und CO2-Flüsse des Kronendaches entlang eines Baumarten-Struktur-Gradienten im Steigerwald. BITÖK Forschungsbericht 1998–2000. Bayreuther Forum Ökol 78:35–46

    Google Scholar 

  • Schulte A, Böswald K, Joosten R (2001) Weltforstwirtschaft nach Kyoto. Wald und Holz als Kohlenstoffspeicher und regenerativer Energieträger. Shaker, Aachen

    Google Scholar 

  • Schulze E-D (2000) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies 142. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Schulze ED, Kelliher FM, Körner C, Lloyd J, Leuning R (1994) Relationships between plant nitrogen nutrition, carbon assimilation rate, and maximum stomatal and ecosystem surface conductances for evaporation: a global ecology scaling exercise. Annu Rev Ecol Sys 25:629–660

    Article  Google Scholar 

  • Shuttleworth WJ (1989) Micrometeorology of temperate and tropical forests. Philos Trans R Soc Lond Ser B 324:299–334

    Article  Google Scholar 

  • Smaltschinski T (1990) Mischbestände in der Bundesrepublik Deutschland. Forstarchiv 61(4):137–140

    Google Scholar 

  • Sperber G, Regher A (1983) Vorratspflege in Unterfranken am Beispiel des Steigerwaldes. Allg Forstz 39:1020–1024

    Google Scholar 

  • Spiecker H (1983) Durchforstungsansätze bei Eiche unter besonderer Berücksichtigung des Dickenwachstums. Allg Forst J Ztg 154(2):21–36

    Google Scholar 

  • Tenhunen JD, Falge E, Ryel R, Manderscheid B, Peters K, Ostendorf B, Joss U, Lischeid G (2001) A flux model hierarchy for spruce forest ecosystems. In: Tenhunen JD, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape management in central Europe. Ecological studies 147. Springer, Berlin Heidelberg New York, pp 417–462

    Chapter  Google Scholar 

  • Thomas FM, Blank R (1996) The effect of excess nitrogen and of insect defoliation on the frost hardiness of bark tissue of adult oaks. Ann Sci For 53:395–406

    Article  Google Scholar 

  • Thomas FM, Kiehne U (1995) The nitrogen status of oak stands in northern Germany and its role in oak decline. In: Nilsson LO, Hüttl RF, Johansson UT (eds) Nutrient uptake and cycling in forest ecosystems. Kluwer, Dordrecht, pp 671–676

    Chapter  Google Scholar 

  • Thomasius H (1992) Prinzipien eines Ökologisch orientierten Waldbaus. Forstw Centalbl 111:141–155

    Article  Google Scholar 

  • Valentini R (2003) Fluxes of carbon, energy and water of European forests. Ecological studies 163. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Walter H, Breckle S-W (1994) Ökologie der Erde, vol 3. Fischer, Stuttgart

    Google Scholar 

  • Waring RH, Running SW (1998) Forest ecosystems. Analysis at multiple scales. Academic Press, San Diego

    Google Scholar 

  • Welß W (1985) Waldgesellschaften im nördlichen Steigerwald. Diss Bot 83:174

    Google Scholar 

  • Wilson KB, Baldocchi DD, Hanson PJ (2001) Leafage affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant Cell Environ 24:571–583

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Köstner, B., Schmidt, M., Falge, E., Fleck, S., Tenhunen, J.D. (2004). Atmospheric and Structural Controls on Carbon and Water Relations in Mixed-Forest Stands of Beech and Oak. In: Matzner, E. (eds) Biogeochemistry of Forested Catchments in a Changing Environment. Ecological Studies, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06073-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06073-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05900-1

  • Online ISBN: 978-3-662-06073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics