Biogeochemistry of Two Forested Catchments in a Changing Environment: A Synthesis

  • E. Matzner
  • B. Köstner
  • G. Lischeid
Part of the Ecological Studies book series (ECOLSTUD, volume 172)


The environmental conditions that influence the functioning of our catchments have changed substantially in the last two decades. These changes comprise chemical and physical properties of the atmosphere and the deposition rates of substances from the atmosphere to the catchments.


Forest Ecosystem Soil Respiration Forest Floor Vapour Pressure Deficit Riparian Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber JD, Nadelhoffer KJ, Steuder P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems — hypotheses and implications. BioScience 39:378–386CrossRefGoogle Scholar
  2. Alewell C, Manderscheid B, Gerstberger P, Matzner E (2000) Effects of reduced atmospheric deposition on soil solution chemistry and elemental contents of spruce needles in NE-Bavaria, Germany. J Plant Nutr Soil Sci 163:509–516CrossRefGoogle Scholar
  3. Alewell C, Armbruster M, Bittersohl J, Evans CD, Meesenburg H, Moritz K, Prechtel A (2001) Are there signs of acidification reversal in freshwater of the low mountain ranges in Germany? Hydrol Earth Syst Sci 5:367–378CrossRefGoogle Scholar
  4. Alsheimer M, Köstner B, Falge E, Tenhunen JD (1998) Temporal and spatial variation in transpiration of Norway spruce stands within a forested catchment of the Fichtelgebirge, Germany. Ann Sci For 55:103–124CrossRefGoogle Scholar
  5. Bauer GA, Persson H, Persson T, Mund M, Hein M, Kummetz E, Matteucci G, van Oene H, Scarascia-Mugnozza G, Schulze E-D (2000) Linking plant nutrition to ecosystem processes. In: Schulze E-D (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies, vol 142. Springer, Berlin Heidelberg New York, pp 63–98CrossRefGoogle Scholar
  6. Berg B, Dise N (2004) Validating a new model for N sequestration in forest soil organic matter. Water Air Soil Pollut Focus (in press)Google Scholar
  7. Beyschlag W, Ryel RJ, Dietsch Ch (1994) Shedding of older needle age classes does not necessarily reduce photosynthetic primary production of Norway spruce. Trees 9:51–59CrossRefGoogle Scholar
  8. Binkley D, Högberg P (1997) Does atmospheric deposition of nitrogen threaten Swedish forests? For Ecol Manage 92:119–152CrossRefGoogle Scholar
  9. Bobbink R, Ashmore M, Braun S, Flückiger W, van den Wyngaert IJJ (2003) Empirical nitrogen critical loads for natural and semi-natural ecosystems. Background document for the expert workshop on empirical critical loads for nitrogen on (semi)natural ecosystems. Swiss Agency for the Environment, Forests and Landscape, BerneGoogle Scholar
  10. Bolstad PV, Reich P, Lee T (2003) Rapid temperature acclimation of leaf respiration rates in Quer cus alba and Quer cus rubra. Tree Physiol 23:969–976CrossRefGoogle Scholar
  11. Braun HJ (1988) Bau und Leben der Bäume, 2nd edn. Rombach, Freiburg, 295 ppGoogle Scholar
  12. Bredemeier M, Blanck K, Xu Y-J, Tietema A, Boxman AW, Emmett B, Moldan F, Gunder-sen P, Schleppi P, Wrigth RF (1998) Input-output budgets at the NITREX sites. For Ecol Manage 101:57–64CrossRefGoogle Scholar
  13. Brooks JR, Meinzer FC, Coulombe R, Gregg J (2002) Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest forests. Tree Physiol 22:1107–1117PubMedCrossRefGoogle Scholar
  14. Brumme R, Leimcke U, Matzner E (1992) The uptake of NH4 and NO3 from wet deposition by above ground parts of young beech (Fagus silvatica L.) trees. Plant Soil 142:273–279CrossRefGoogle Scholar
  15. Brumme R, Borken W, Finke S (1999) Hierarchical control on nitrous oxide emission in forest ecosystems. Global Biogeochem Cyc 13:1137–1148CrossRefGoogle Scholar
  16. Burgess SSO, Adams MA, Turner NC, Beverly CR, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311CrossRefGoogle Scholar
  17. Chapin FG, Torn MS, Tateno M (1996) Principles of ecosystem sustainability. Am Nat 148:1016–1034CrossRefGoogle Scholar
  18. Christensen NL, Bartuska AM, Brown JH, Carpenter S, D’Antonio C, Francis R, Franklin JF, MacMahon JA, Noss RF, Parsons DJ, Peterson CH, Turner MG, Woodmansee RG (1996) The report of the Ecological Society of America Committee on the scientific bases for ecosystem management. Ecol Appl 6:665–691CrossRefGoogle Scholar
  19. Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cyc 13:623–645CrossRefGoogle Scholar
  20. Corbett J J, Koehler HW (2003) Updated emissions from ocean shipping. J Geophys Res 108(D20):4650CrossRefGoogle Scholar
  21. Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB (2002) Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric For Meteorol 113:3–19CrossRefGoogle Scholar
  22. Davidson EA, Chorover J, Dail DB (2003) A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biol 9:228–236CrossRefGoogle Scholar
  23. Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95:565–574Google Scholar
  24. Derome J, Pätilä A (1989) The liming of forest soils in Finland. Meddelser fran Norsk Inst Skogforskning 42:147–155Google Scholar
  25. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190PubMedCrossRefGoogle Scholar
  26. Dusquesnay A, Dupouey JL, Clement A, Ulrich E, Le Tacon F (2000) Spatial and temporal variability of foliar mineral concentration in beech (Fagus sylvatica) stand in northeastern France. Tree Physiol 20:13–22CrossRefGoogle Scholar
  27. Ehman JL, Schmid HP, Grimmond CSB, Randolph JC, Hanson PJ, Wayson CA, Cropley FD (2002) An initial intercomparison of micrometeorological and ecological inventory estimates of carbon exchange in a mid-latitude deciduous forest. Global Change Biol 8:575–589CrossRefGoogle Scholar
  28. Endresen Ø, Sørgård E, Sundet JK, Dalsøren SB, Isaksen ISA, Berglen TF, Gravir G (2003) Emission from international sea transportation and environmental impact. J Geophys Res 108(D17):4560CrossRefGoogle Scholar
  29. Evans CD, Monteith DT (2001) Chemical trends at lakes and streams in the UK Acid Waters Monitoring Network, 1988–2000: evidence for recent recovery at a national scale. Hydrol Earth Syst Sci 5:351–366CrossRefGoogle Scholar
  30. Evans CD, Cullen JM, Alewell C, Kopácek J, Marchetto A, Moldan F, Prechtel A, Rogora M, Vesely J, Wright RF (2001) Recovery from acidification in European surface waters. Hydrol Earth Syst Sci 5:283–297CrossRefGoogle Scholar
  31. Falge E (1997) Die Bedeutung der Kronendachtranspiration von Fichtenbeständen Picea abies (L.) Karst.) mit unterschiedlichen Modellierungsansätzen. Bayreuther Forum Ökol 48:1–221Google Scholar
  32. Flückiger W, Braun S (1998) Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environ Pollut 102:69–76CrossRefGoogle Scholar
  33. Freeman C, Evans CD, Monteith DT (2001) Export of organic carbon from peat soils. Nature 412:785PubMedCrossRefGoogle Scholar
  34. George E, Kircher S, Schwarz P, Tesar A, Seitz B (1999) Effect of varied soil nitrogen supply on growth and nutrient uptake of young Norway spruce plants grown in a shaded environment. J Plant Nutr Soil Sci 162:301–307CrossRefGoogle Scholar
  35. Glardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861CrossRefGoogle Scholar
  36. Gödde M, David MB, Christ MJ, Kaupenjohann M, Vance GF (1996) Carbon mobilization from the forest floor under red spruce in the northeastern USA. Soil Biol Biochem 28:1181–1189CrossRefGoogle Scholar
  37. Godbold DL (1994) Aluminium and heavy metal stress: from the rhizosphere to the whole plant. In: Godbold DL, Hüttermann A (eds) Effects of acid rain on forest processes. Wiley-Liss, New York, pp 231–264Google Scholar
  38. Goodale CL, Aber JD, Vitousek PM (2003) An unexpected nitrate decline in New Hampshire streams. Ecosystems 6:75–86CrossRefGoogle Scholar
  39. Grünwald T (2003) Langfristige Beobachtungen von Kohlendioxidflüssen mittels Eddy-Kovarianz-Technik über einem Altfichtenbestand im Tharandter Wald. Dissertation, Technische Universität DresdenGoogle Scholar
  40. Harrison AF, Schulze ED, Gebauer G, Bruckner G (2000) Canopy uptake and utilization of atmospheric nitrogen. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies, vol 142. Springer, Berlin Heidelberg New York, pp 171–188CrossRefGoogle Scholar
  41. Hedin LO, Granat L, Likens GE, Buishand TA, Galloway JN, Butler TJ, Rodhe H (1994) Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367:351–354CrossRefGoogle Scholar
  42. Holling CS (1986) Resilience of ecosystems: local surprise and global change. In: Clark WC, Munn, RE (eds) Sustainable development and the biosphere, chap 10. Cambridge University Press, Cambridge, pp 292–317Google Scholar
  43. Jackson RB, Carpenter SR, Clifford ND, McKnight DM, Naiman RJ, Postei SL, Running SW (2001) Water in a changing world. Ecol Appl 11(4): 1027–1045CrossRefGoogle Scholar
  44. Horn R, Schulze ED, Hantschel R (1989) Nutrient balance and element cycling in healthy and declining Norway spruce stands. Ecological studies, vol 77. Springer, Berlin Heidelberg New York, pp 444–454Google Scholar
  45. Jenkins A, Ferrier RC, Wright RF (2001) Assessment of recovery of European surface waters from acidification 1979 to 2000. Special issue. Hydrol Earth Syst Sci 5:273–542CrossRefGoogle Scholar
  46. Johnson DW, Cheng W, Burke IC (2000) Biotic and abiotic nitrogen retention in a variety of forest soils Soil Sci Soc Am J 64:1503–1514CrossRefGoogle Scholar
  47. Kaiser K, Eusterhues K, Rumpel C, Guggenberger G, Kögel-Knabner I (2002) Stabilization of organic matter by soil minerals — investigations of density and particle-size fractions from two acid forest soils. J Plant Nutr Soil Sci 165:451–459CrossRefGoogle Scholar
  48. Katz C, Oren R, Schulze E-D, Milburn JA (1989) Uptake of water and solutes through twigs of Picea abies. Trees 3:33–37CrossRefGoogle Scholar
  49. Köstner B (2001) Evaporation and transpiration from coniferous and broad-leaved forests in central Europe — relevance of patch-level studies for spatial scaling. Meteo-rol Atmos Phys 76:69–82CrossRefGoogle Scholar
  50. Köstner B, Tenhunen JD, Alsheimer M, Wedler M, Scharfenberg H-J, Zimmermann R, Falge E, Joss U (2001) Controls on evapotranspiration in a spruce forest catchment of the Fichtelgebirge. In: Tenhunen JD, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape management in central Europe. Ecological studies, vol 147. Springer, Berlin Heidelberg New York, pp 377–415CrossRefGoogle Scholar
  51. Köstner B, Falge E, Tenhunen JD (2002) Age-related effects on leaf area/sapwood area relationships, canopy transpiration, and carbon gain of Picea abies stands in the Fichtelgebirge/Germany. Tree Physiol 22:567–574PubMedCrossRefGoogle Scholar
  52. Kramer PJ (1946) Absorption of water through suberized roots of trees. Plant Physiol 21:37–41PubMedCrossRefGoogle Scholar
  53. Kreutzer K (1995) Effects of forest liming on soil processes. Plant Soil 168/169:447–470CrossRefGoogle Scholar
  54. Lange OL, Weikert RM, Wedler M, Gebel J, Heber U (1989) Photosynthese und Nährstoffversorgung von Fichten aus einem Waldschadensgebiet auf basenarmen Untergrund. Allg Forst-Zeitschr (AFZ) 3:10Google Scholar
  55. Likens DE, Driscoll CT, Buso DC (1996) Long term effects of acid rain: response and recovery of a forested ecosystem. Science 272:244–246CrossRefGoogle Scholar
  56. Limmer C, Drake HL (1996) Nonsymbiotic N2 fixation by acidic and pH-neutral forest soils: aerobic and anaerobic differentials. Soil Biol Biochem 28:177–183CrossRefGoogle Scholar
  57. MacDonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biol 8:1028–1033CrossRefGoogle Scholar
  58. Magill AH, Aber JD, Hendricks J J, Bowden RD, Melillo JM, Steudler PA (1997) Biogeo-chemical response of forest ecosystem to simulated chronic nitrogen deposition. Ecol Appl 7:402–415CrossRefGoogle Scholar
  59. Marques MC (1999) Eintrag von luftgetragenen partikelgebundenen Spurenstoffen in Wälder durch trockene Deposition. Wissenschaflticher Verlag, BerlinGoogle Scholar
  60. Matzner E (1989) Acidic precipitation: case study: Soiling, West Germany. In: Adriano DC, Havas M (eds) Advances in environmental science: acid precipitation, vol 1. Springer, Berlin Heidelberg New York, pp 39–83CrossRefGoogle Scholar
  61. Matzner E, Meiwes KJ (1994) Long-term development of element fluxes with bulk precipitation and throughfall in two German forests. J Environ Qual 23:162–166CrossRefGoogle Scholar
  62. Matzner E, Murach D (1995) Soil changes induced by air pollutant deposition and their implication for forests in central Europe. Water Air Soil Pollut 85:63–76CrossRefGoogle Scholar
  63. Meesenburg H, Meiwes KJ, Bartens H (1999) Veränderung der Elementvorräte im Boden von Buchen- und Fichtenökosystemen im Soiling. Freiburger Forstl Forsch 7:109–114Google Scholar
  64. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176PubMedCrossRefGoogle Scholar
  65. Michalzik B, Matzner E (1999) Dynamics of dissolved organic nitrogen and carbon in a central European Norway spruce ecosystem. Eur J Soil Sci 50:579–590CrossRefGoogle Scholar
  66. Mund M, Kummetz E, Hein M, Bauer GA, Schulze ED (2002) Growth and carbon stocks of a spruce forest chronosequence in central Europe. For Ecol Manage 171:275–296CrossRefGoogle Scholar
  67. Nellemann C, Thomsen MG (2001) Long-term changes in forest growth: potential effects of nitrogen deposition and acidification. Water Air Soil Pollut 128:197–205CrossRefGoogle Scholar
  68. Niemand C, Köstner B, Prasse H, Grünwald T, Bernhofer C (2003) Charakterisierung von Phänophasen und Vegetationsperiode im Tharandter Wald auf phänologischer und meteorologischer Datenbasis. Tharandter Klimaprotokolle 9:164–166Google Scholar
  69. Nilsson J, Grenfelt P (1988) Critical loads for sulphur and nitrogen: report. Nordic Council of Ministers, CopenhagenGoogle Scholar
  70. Oren R, Zimmermann R (1989) CO2-assimilation and the carbon budget of healthy and declining Norway spruce stands. Ecological studies, vol 77. Springer, Berlin Heidelberg New York, pp 352–368Google Scholar
  71. Oren R, Phillips N, Katul G, Ewers BE, Pataki DE (1998) Scaling xylem sap flux and soil water balance and calculation variance: a method for partitioning water flux in forests. Ann Sci For 55:191–216CrossRefGoogle Scholar
  72. Ostendorf B, Manderscheid B (1997) Seasonal modelling of catchment water balance: a two-level cascading modification of TOPMODEL to increase the realism of spatio-temporal processes. Hydrol Process 11:1231–1242CrossRefGoogle Scholar
  73. Papen H, Butterbach-Bahl K (1999) A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany, 1. N2O emission. Geophys Res 104:18487–18503CrossRefGoogle Scholar
  74. Park JH, Matzner E (2003) Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry 66:265–286CrossRefGoogle Scholar
  75. Pretzsch H (1996) Growth trends of forests in Germany. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) Growth trends in European forests. Springer, Berlin Heidelberg New York, pp 107–131Google Scholar
  76. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99Google Scholar
  77. Reuss JO, Johnson DW (1986) Acid deposition and the acidification of soils and waters. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  78. Schlesinger WH, Winkler JP, Megonigal JP (2000) Soils and the global carbon cycle. In: Wigley TML, Schimmel DS (eds) The carbon cycle. Cambridge University Press, Cambridge, pp 93–101CrossRefGoogle Scholar
  79. Schober R (1979) Ertragstafeln wichtiger Baumarten. Sauerländers Verlag, FrankfurtGoogle Scholar
  80. Schulze ED, Lange OL Oren R (1989a) Forest decline and air pollution. A study of spruce (Picea abies) on acid soils. Ecological studies, vol 11. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  81. Schulze E-D, de Vries W, Hauhs M, Rosen K, Rasmussen L, Tamm O, Nilsson J (1989b) Critical loads for nitrogen deposition on forest ecosystems. Water Air Soil Pollut 48:451–456CrossRefGoogle Scholar
  82. Schulze ED, Högberg P, van Oene H, Persson T, Harrison AF, Read D, Kjoller A, Matteucci G (2000) Interactions between the carbon and nitrogen cycle and the role of biodiversity: a synopsis of a study along a north-south transect through Europe. Ecological studies, vol 142. Springer, Berlin Heidelberg New York, pp 468–490Google Scholar
  83. Schwesig D, Kalbitz K, Matzner E (2003a) Effects of aluminium on the mineralization of dissolved organic carbon derived from forest floors. Eur J Soil Sci 54:311–322CrossRefGoogle Scholar
  84. Schwesig D, Kalbitz K, Matzner E (2003b) Mineralization of dissolved organic carbon in mineral soil solution of two forest soils. J Plant Nutr Soil Sci 166:585–593CrossRefGoogle Scholar
  85. Sedjo RA (1992) Temperate forest ecosystems in the global carbon cycle. Ambio 21:274–277Google Scholar
  86. Skjelevale BL, Andersen T, Halvorsen GA, Raddum GG, Heegaard E, Stoddard JL, Wright RF (2000) The 12 year report: acidification of surface water in Europe and North America; trends, biological recovery and heavy metals. ICP Waters Rep 52:1–115Google Scholar
  87. Spieker H, Mielikäinen R, Köhl M, Skorgsgaard JP (1996) Growth trends in European forests. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  88. Sullivan TJ (2000) Aquatic effects of acidic deposition. Lewis Publishers, New York, pp 1–373CrossRefGoogle Scholar
  89. Tamm CO (1991) Nitrogen in terrestrial ecosystems. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  90. Tipping E, Wolf C, Rigg E, Harrison AF, Ineson P, Taylor K, Benham D, Roskitt J, Rowland AP, Bol R, Harkness DD (1999) Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils investigated by a field manipulation experiment. Environ Int 25:83–95CrossRefGoogle Scholar
  91. Tveite B, Abrahamsen G, Stuanes AO (1991) Liming and wet acid deposition effects on tree growth and nutrition: experimental results. In: Zöttl HW, Hüttl RF (eds) Management of nutrition in forests under stress. Kluwer, Dordrecht, pp 409–422CrossRefGoogle Scholar
  92. Ulrich B (1983) A concept of forest ecosystems stability and of acid deposition as driving force for destabilization. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht, pp 1–29CrossRefGoogle Scholar
  93. Ulrich B, Mayer R, Khanna PK (1980) Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Sci 130:193–199CrossRefGoogle Scholar
  94. Valentini R (ed) (2003) Fluxes of carbon, water and energy of European forests. Ecological studies, vol 164. Springer, Berlin Heidelberg New YorkGoogle Scholar
  95. Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Gudmundsson J, Thorgelrsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865PubMedCrossRefGoogle Scholar
  96. Van Breemen N, Mulder J, Driscoll CT (1983) Acidification and alkalinization of soils.Plant Soil 75:283–308CrossRefGoogle Scholar
  97. Van der Salm C, de Vries W (2001) A review of the calculation procedure for critical acid loads for terrestrial ecosystems. Sci Total Environ 271:11–25PubMedCrossRefGoogle Scholar
  98. Vejre H, Ingerslev M, Raulund-Rasmussen K (2001) Fertilization of Danish forests: a review of experiments. Scand J For Res 16:502–513CrossRefGoogle Scholar
  99. Von Carlowitz HC (1713) Sylvicultura Oekonimica oder Haußwirthliche Nachricht undGoogle Scholar
  100. Naturgemäßige Anweisung zur wilden Baum-Zucht. Braun, LeipzigGoogle Scholar
  101. Waring RH, Running SW (1978) Sapwood water storage: its contribution to transpiration and effect upon water conductance through stems of old growth Douglas fir.Plant Cell Environ 1:131–140CrossRefGoogle Scholar
  102. Wedler M, Köstner B, Tenhunen JD (1996) Understory contribution to stand total water loss at an old Norway spruce forest. Verh Ges Ökol 26:69–77Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • E. Matzner
  • B. Köstner
  • G. Lischeid

There are no affiliations available

Personalised recommendations