Riparian Zones in a Forested Catchment: Hot Spots for Microbial Reductive Processes

  • K. Küsel
  • C. Alewell
Part of the Ecological Studies book series (ECOLSTUD, volume 172)


Anthropogenic deposition of protons, sulfate and nitrate has resulted in acidification of the groundwater in forested catchments (Hamm 1995). Nitrate and sulfate are leached from the upland aerated soils into lower situated soils and waterlogged fens with each rainfall. Under anoxic conditions in soils, nitrate and sulfate can be reduced by microorganisms and alkalinity is generated (Sexstone et al. 1984; Tiedje et al. 1984). Thus, depending on the soil characteristics, climatic parameters, and the composition of the soil microbiota, wetland soils may act as long-term sinks for deposited protons, sulfate, and nitrate. There is a principal difference between the retention of nitrate and sulfate in wetlands with respect to the sink function. The microbial reduction of nitrate leads to gaseous products, like or N2O or N2, which are lost to the atmosphere. Thus, the generation of alkalinity is permanent, and wetlands act as long-term sinks. In contrast, the reduction of sulfate leads to the formation of sulfide, which can be either fixed in the presence of iron as iron sulfides or as organic reduced sulfur, or it can be oxidized back to sulfate under changing redox conditions (Wieder and Lang 1988; Fig. 22.1). In the latter case, wetlands would not act as a long-term sink for sulfate.


Soil Solution Sulfate Reduction Riparian Zone Peat Layer Upland Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alewell C (1998) Investigating sulfate sorption and desorption of acid forest soils with special consideration of soil structure. Z Pflanzenernaehr Bodenkd 161:73–80CrossRefGoogle Scholar
  2. Alewell C, Gehre M (1999) Spatial and temporal heterogeneity of δ34S values in a forested catchment as an indicator for the non conservative nature of the SO4 2_ ion. Biogeo- chemistry 47:319–333CrossRefGoogle Scholar
  3. Alewell C, Giesemann A (1996) Sulfate reduction in a forested catchment as indicated by δ34S of soil solutions and runoff. Isot Environ Health Stud 32:203–210CrossRefGoogle Scholar
  4. Alewell C, Novak M (2001) Spotting zones of dissimilatory sulfate reduction in a forested catchment: the 34S-35S approach. Environ Pollut 112:369–377PubMedCrossRefGoogle Scholar
  5. Alewell C, Bredemeier M, Matzner E, Blanck K (1997) Soil solution response to experimentally reduced acid deposition in a forest ecosystem. J Environ Qual 26:658–665CrossRefGoogle Scholar
  6. Bischof K, Loy A, Wagner M, Drake HL, Küsel K (2003) Characterization of sulfate-reduc-ing prokaryotes in a CH4-emitting acidic fen. Abstract 4. In: Proc Gemeinsamer Kongress der DGHM, ÖGHMP und VAAM, BioSpectrum, Abstr PH053, Berlin, 103 ppGoogle Scholar
  7. Blodau C, Roehm CL, Moore TR (2002) Iron, sulfur, and dissolved carbon dynamics in a northern peatland. Arch Hydrobiol 154:561–583Google Scholar
  8. Brown KA (1985) Sulphur distribution and metabolism in waterlogged peat. Soil Biol Biochem 17:39–45CrossRefGoogle Scholar
  9. Brown KA (1986) Formation of organic sulphur in anaerobic peat. Soil Biol Biochem 18:131–140CrossRefGoogle Scholar
  10. Canfield DE (1989) Reactive iron in marine sediments. Geochim Cosmochim Acta 53:619–632PubMedCrossRefGoogle Scholar
  11. Canfield DE, DesMarais DJ (1991) Aerobic sulphate reduction in microbial mats. Science 251:1471–1473PubMedCrossRefGoogle Scholar
  12. Capone DG, Kiene RP (1988) Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon metabolism. Limnol Oceanogr 4:725–749CrossRefGoogle Scholar
  13. Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357CrossRefGoogle Scholar
  14. Currie JA (1961) Gaseous diffusion in the aeration of aggregated soils. Soil Sei 92:40–45CrossRefGoogle Scholar
  15. Durka W (1994) Isotopenchemie des Nitrat, Nitrataustrag, Wasserchemie und Vegetation von Waldquellen im Fichtelgebirge (NO-Bayern). Bayreuther Forum Ökol 11:1–197Google Scholar
  16. Durka W, Giesemann A, Schulze ED, Jäger HJ (1999) Stable sulfur isotopes in forest spring waters from the Fichtelgebirge (Germany). Isot Environ Health Stud 35:237–249CrossRefGoogle Scholar
  17. Gebauer G, Giesemann A, Schulze E-D, Jäger H-J (1994) Isotope ratios and concentrations of sulfur and nitrogen in needles and soils of Picea abies stands as influenced by atmospheric deposition of sulfur and nitrogen compounds. Plant Soil 164:267–281CrossRefGoogle Scholar
  18. Giblin AE, Wieder RK (1992) Sulphur cycling in marine and freshwater wetlands. In: Howarth RW, Stewart JWB, Ivanov MV (eds) Sulphur cycling on the continents: wetlands, terrestrial ecosystems, and associated water bodies. Scope 48. Wiley, Chichester, pp 85–123Google Scholar
  19. Giesemann A, Jäger HJ, Feger KH (1992) Evaluation of the sulfur budget of a spruce ecosystem in the Black Forest by means of stable-isotope analysis. In: Hendry MJ, Krouse HR (eds) Proc Worksh Sulfur Transformations in Soil Ecosystems, 5–7 Nov, Saskatoon, Saskatchewan, CanadaGoogle Scholar
  20. Glaser PH (1987) The ecology of patterned boreal peatlands of northern Minnesota: a community profile. Biol Rep 85. US Fish and Wildlife Service, Washington, DCGoogle Scholar
  21. Grennfelt P, Hultberg H (1986) Effects of nitrogen deposition on the acidification of terrestrial and aquatic ecosystems. Water Air Soil Pollut 30:945–963CrossRefGoogle Scholar
  22. Hamm A (1995) Saure Niederschläge und ihre Folgen für die Gewässer. Informationsberichte des Bayerischen Landesamts für Wasserwirtschaft 3/95, Munich, pp 37–44Google Scholar
  23. Höpner T (1981) Design and use of a diffusion sampler for interstitial water from fine grained sample. Environ Tech Lett 2:187–196CrossRefGoogle Scholar
  24. Horn MA, Matthies C, Küsel K, Schramm A, Drake HL (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83PubMedCrossRefGoogle Scholar
  25. Ivanov MV (1956) Isotopes in the determination of the sulfate-reduction rate in Lake Belovod. Mikrobiologia 25:305–309Google Scholar
  26. Johnson DW, Cole DW, van Miegroet H, Horng FW (1986) Factors affecting anion movement and retention in four forest soils. Soil Sci Soc Am J 50:776–783CrossRefGoogle Scholar
  27. Jorgensen BB (1978) A comparison of methods for quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurement with radiotracer techniques. Geomicrobiology J 1:11–27CrossRefGoogle Scholar
  28. Kaiser M (1996) Bestimmung von Sulfat-Reduktionsraten mit der 35SO4 2_-Methode in säurebelasteten Quelleinzugsgebieten des Frankenwaldes und des Fichtelgebirges (Nordostbayern). Diploma Thesis, University of Bayreuth, GermanyGoogle Scholar
  29. Küsel K, Wagner C, Drake HL (1999) Enumeration and metabolic product profiles of the anaerobic microflora in the mineral soil and litter of a beech forest. FEMS Microbiol Ecol 29:91–103CrossRefGoogle Scholar
  30. Küsel K, Trenz S, Alewell C, Drake HL (2002) Effect of biogeochemical parameters on the reduction of sulfate and Fe(III) in slightly acidic bogs. In: Proc Annu Meetg American Society of Microbiology, Abstr N-125, Salt Lake City, 327 ppGoogle Scholar
  31. Landsdown JM, Quay, PD, King SL (1992) CH4 production via CO2 reduction in a temperate bog: a source of 13C-depleted CH4. Geochim Cosmochim Acta 56:3493–3503CrossRefGoogle Scholar
  32. Lindemann J (1997) Quantifizierung biogeochemischer Eisen- und Sulfat-Umsetzungen in einem Quellmoor und deren Beitrag zur Säureneutralisierung in einem Einzugsgebiet des Frankenwaldes. Bayreuther Forum Ökol 51:1–271Google Scholar
  33. Llobet-Brossa E, Rossello-Mora R, Amann R (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64:2691–2696PubMedGoogle Scholar
  34. Lovley DR, Klug MJ (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl Environ Microbiol 45:187–192PubMedGoogle Scholar
  35. Lovley DR, Phillips EJP (1986) Availability of Fe(III) for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl Environ Microbiol 52:751–757PubMedGoogle Scholar
  36. Manderscheid B, Matzner E (1995) Spatial and temporal variability of soil solution chemistry and seepage water ion fluxes in a mature Norway spruce (Picea abies (L.) Karst.) stand. Biogeochemistry 30:99–114CrossRefGoogle Scholar
  37. Manderscheid B, Schweisser T, Lischeid G, Alewell C, Matzner E (2000) Sulfate pools in the weathered substrata of a forested catchment. Soil Sci Soc Am J 64:1078–1082CrossRefGoogle Scholar
  38. Mayer HP, Conrad R (1990) Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiol Ecol 73:103–112CrossRefGoogle Scholar
  39. Mayer B, Feger KH, Giesemann A, Jäger H-J (1995) Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data. Biogeochemistry 30:31–58CrossRefGoogle Scholar
  40. Mclnerney M J, Bryant MP (1981) Basic principles of basic conversions in anaerobic digestion and methanogenesis. In: Sofer SS, Zaborsky OR (eds) Biomass. Conversion processes for energy and fuels. Plenum Press, New York, pp 277–296CrossRefGoogle Scholar
  41. Mitchell MJ, Burke MK, Shepard JP (1992) Seasonal and spatial patterns of S, Ca and N dynamics of a northern hardwood ecosystem. Biogeochemistry 17:165–189CrossRefGoogle Scholar
  42. Mitchell MJ, Krouse RH, Mayer B, Stam AC, Zhang YM (1999) Use of stable isotopes in evaluating biogeochemistry of forest ecosystems. In: Kendall C, McDonnell J (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 498–518Google Scholar
  43. Moore TR, Roulet NT, Waddington JAM (1998) Uncertainty in predicting the effect of climatic change on the carbon cycle in Canadian peatlands. Clim Change 40:229–245CrossRefGoogle Scholar
  44. Morgan MD (1995) Modeling excess sulfur deposition on wetland soils using stable sulfur isotopes. Water Air Soil Pollut 79:299–307CrossRefGoogle Scholar
  45. Munch JC, Ottow JCG (1980) Preferential reduction of amorphous to crystalline iron oxides by bacterial activity. Soil Sci 129:15–21CrossRefGoogle Scholar
  46. Nedwell D, Watson A (1995) CH4 production, oxidation and emissions in a UK ombrotrophic peat bog: Influence of S04 2_ from acid rain. Soil Biol Biochem 27:893–903CrossRefGoogle Scholar
  47. Novak M (1998) 634S dynamics in the system bedrock-soil-runoff-atmosphere: results from the GEOMON network of small catchments, Czech Republic. In: Proc 9th Int Symp on Water-Rock Interaction, WRI-9, Taupo, New Zealand, 30 March-3 AprilGoogle Scholar
  48. Novak M, Wieder RK, Schell WR (1994) Sulfur during early diagenesis in Sphagnum peat: insights from 634S ratio profiles in 210Pb-dated peat cores. Limnol Oceanogr 39:1172–1185CrossRefGoogle Scholar
  49. Novak M, Botrell SH, Fottova D, Buzek F, Groscheova H, Zak K (1996) Sulfur isotope signals in forest soils of central Europe along an air pollution gradient. Environ Sci Tech 12:3473–3476CrossRefGoogle Scholar
  50. Novak M, Kirchner JW, Groscheova H, Havel M, Cerny J, Krejci R, Buzek F (1999) Sulfur isotope dynamics in two central European catchments affected by high atmospheric deposition of SOx. Geochim Cosmochim Acta 64:367–383CrossRefGoogle Scholar
  51. Parkin TB, Tiedje JM (1984) Application of a soil core method to measure field denitrifi-cation rates. Soil Biol Biochem 16:323–330CrossRefGoogle Scholar
  52. Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic Press, San Diego, pp 12–33Google Scholar
  53. Paul S (2003) Heterogenität der Sulfatreduktion im Einzugsgebiet des Lehstenbachs, Fichtelgebirge. Diploma Thesis, University of Bayreuth, GermanyGoogle Scholar
  54. Peters V, Conrad R (1996) Sequential reduction processes and initiation of CH4 production upon flooding oxic upland soils. Soil Biol Biochem 28:371–382CrossRefGoogle Scholar
  55. Ravenschlag K, Sahm K, Knoblauch C, Jorgensen BB, Amann R (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl Environ Microbiol 66:3592–3602PubMedCrossRefGoogle Scholar
  56. Ravenschlag K, Sahm K, Amann R (2001) Quantitative molecular analysis of the microbial community in marine Arctic sediments. Appl Environ Microbiol 67:387–395PubMedCrossRefGoogle Scholar
  57. Rolland W, Giesemann A, Feger KH, Jäger H J (1991) Use of stable S isotopes in the assessment of S turnover in experimental forested catchments in the Black Forest, southwest Federal Republic of Germany. In: Proc Int Symp on The Use of Stable Isotopes in Plant Nutrition, Soil Fertility and Environmental Studies, Vienna, 1–5 Oct 1990, IAEA-SM-313/51, International Atomic Energy Agency, Vienna, Austria, pp 593–598Google Scholar
  58. Roden ER, Wetzel RG (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol Oceanogr 41:1733–1748CrossRefGoogle Scholar
  59. Roden ER, Zachara JM (1996) Microbial reduction of crystalline Fe(III) oxides: role of surface area and potential for cell growth. Environ Sci Tech 30:1618–1628CrossRefGoogle Scholar
  60. Sahm K, Knoblauch C, Pernthaler J, Amann R (1999) Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments. Appl Environ Microbiol 65:3976–3981PubMedGoogle Scholar
  61. Sansone FJ, Martens CS (1982) Volatile fatty acid cycling in organic-rich marine sediments. Geochim Cosmochim Acta 46:1575–1589CrossRefGoogle Scholar
  62. Sexstone AJ, Parkin TB, Tiedje JM (1984) Temporal response of soil denitrification rates to rainfall and irrigation. Soil Sci Soc Am J 49:99–103CrossRefGoogle Scholar
  63. Smith KA, Arah JRM (1986) Anaerobic micro-environments in soil and the occurrence of anaerobic bacteria. In: Jensen V, Kjöller A, Sorensen LH (eds) Proc Microbial Communities in Soil FEMS Symp, no 33, Elsevier, London, pp 247–261Google Scholar
  64. Sobolev D, Roden EE (2002) Evidence for rapid microscale bacteria redox cycling of iron in circumneutral environments. Ant Leeuwenhoek 81:587–597CrossRefGoogle Scholar
  65. Spratt HG, Morgan MD (1990) Sulfur cycling in a cedar dominated freshwater wetland. Limnol Oceanogr 35:1586–1593CrossRefGoogle Scholar
  66. Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH.. FEMS Microbiol Ecol 34:181–186PubMedCrossRefGoogle Scholar
  67. Tiedje JM, Sexstone AJ, Parkin TB, Revsbech NP, Shelton DR (1984) Anaerobic processes in soil. Plant Soil 76:197–212CrossRefGoogle Scholar
  68. Van der Lee GEM, de Winder B, Bouten W, Tietema A (1999) Anoxic microsites in Douglas fir litter. Soil Biol Biochem 31:1295–1301CrossRefGoogle Scholar
  69. Whiticar M J, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation — isotope evidence. Geochim Cosmochim Acta 50:693–707CrossRefGoogle Scholar
  70. Wieder RK, Lang GE (1988) Cycling of inorganic and organic sulphur in peat from Big Run Bog, West Virginia. Biogeochemistry 5:221–242CrossRefGoogle Scholar
  71. Wieder RK, Yavitt JB, Lang GE (1990) Methane production and sulfate reduction in two Appalachian peatlands. Biogeochemistry 10:81–104CrossRefGoogle Scholar
  72. Wieder RK, Novak M, Rodrigues D (1996) Sample drying, total sulfur and stable sulfur isotopic ratio determination in freshwater wetland peat. Soil Sci Soc Am J 60:949–952CrossRefGoogle Scholar
  73. Williams RT, Crawford RL (1984) Methane production in Minnesota peatlands. Appl Environ Microbiol 47:1266–1271PubMedGoogle Scholar
  74. Yavitt JB, Lang GE, Wieder RK (1987) Control of carbon mineralization to CH4 and CO2 in anaerobic, Sphagnum derived peat from Big Run Bog, West Virginia. Biogeochemistry 4:141–157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • K. Küsel
  • C. Alewell

There are no affiliations available

Personalised recommendations