Sequestration Rates for C and N in Soil Organic Matter at Four N-Polluted Temperate Forest Stands

Part of the Ecological Studies book series (ECOLSTUD, volume 172)


The quantification of terrestrial sources and sinks for carbon dioxide and nitrogen-based greenhouse gases is one of the most important tasks facing environmental scientists today. Central to this is the determination of mechanisms for carbon (C) and nitrogen (N) sequestration in the soil organic matter (SOM). The buildup rate of an SOM layer depends not only on the amount of litter fall and the quality of the decomposing plant litter but also on the completeness of its decomposition. A clear problem is that the accumulation of SOM is a slow process that normally spans generations of scientists, thereby causing continuity problems in studying its buildup as well as the mechanisms controlling it.


Litter Type European Beech Litter Fall Sequestration Rate Litter Mass Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alewell C (2001) Predicting reversibility of acidification: the European sulfur story. Water Air Soil Pollut 130:1271–1276CrossRefGoogle Scholar
  2. Anderson J (1973) The breakdown and decomposition of sweet chestnut (Castanea sativa Mill.) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils. I. Breakdown, leaching and decomposition. Oecologia 12:251–274Google Scholar
  3. Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manage 133:12–22CrossRefGoogle Scholar
  4. Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456CrossRefGoogle Scholar
  5. Berg B, Johansson MB (1998) Maximum limit for foliar litter decomposition — a synthesis of data from forest systems, part 1. In: Berg B (ed) A maximum limit for foliar litter decomposition — a synthesis of data from forest systems. Reports from the Departments of Forest Ecology and Forest Soils, vol 77, Swedish University of Agricultural Sciences, Uppsala, p 158Google Scholar
  6. Berg B, Dise N (2004) Validating a new model for N sequestration in forest soil organic matter? Water Air Soil Pollut Focus (in press)Google Scholar
  7. Berg B, McClaugherty C (2003) Plant litter. Decomposition. Humus formation. Carbon sequestration. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  8. Berg B, Ekbohm G, McClaugherty CA (1984) Lignin and holocellulose relations during long-term decomposition of some forest litters. Long-term decomposition in a Scots pine forest IV. Can J Bot 62:2540–2550CrossRefGoogle Scholar
  9. Berg B, Berg M, Flower-Ellis JGK, Gallardo A, Johansson M, Lundmark JE, Madeira M (1993) Amounts of litterfall in some European coniferous forests. In: Breymeyer A (ed) Proc Scope Seminar, Conf Pap 18, Geography of Carbon Budget Processes in Terrestrial Ecosystems, Szymbark, 17–23 Aug 1991, pp 123–146Google Scholar
  10. Berg B, Ekbohm G, Johansson MB, McClaugherty C, Rutigliano F, Virzo De Santo A (1996) Some foliar litter types have a maximum limit for decomposition — a synthesis of data from forest systems. Can J Bot 74:659–672CrossRefGoogle Scholar
  11. Berg B, Laskowski R, Virzo De Santo A (1999) Estimated N concentration in humus as based on initial N concentration in foliar litter — a synthesis. Can J Bot 77:1712–1722CrossRefGoogle Scholar
  12. Berg B, McClaugherty C, Virzo de Santo A, Johnson D (2001) Humus buildup in boreal forests — effects of litter fall and its N concentration. Can J For Res 31:988–998CrossRefGoogle Scholar
  13. Bunell F, Tait DEN, Flanagan PW, van Cleve K (1977) Microbial respiration and substrate weight loss. I. A general model of the influence of abiotic variables. Soil Biol Biochem 9:33–40CrossRefGoogle Scholar
  14. Couteaux MM, McTiernan K, Berg B, Szuberla D, Dardennes P (1998) Chemical composition and carbon mineralization potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–595CrossRefGoogle Scholar
  15. Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung: Ergebnisse des Sollingprojekts 1966–1986. Ulmer, StuttgartGoogle Scholar
  16. Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer series in wood science. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  17. Fogel R, Cromack K (1977) Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon. Can J Bot 55:1632–1640CrossRefGoogle Scholar
  18. Hatakka A (2001) Biodegradation of lignin. In: Hofman M, Stein A (eds) Biopolymers, vol 1. Lignin, humic substances and coal. Wiley, Weinheim, pp 129–180Google Scholar
  19. Hintikka V, Näykki O (1967) Notes on the effects of the fungus Hydnellum ferrugineum on forest soil and vegetation. Commun Inst Forest Fenn 62:1–22Google Scholar
  20. Jenny H, Gessel SP, Bingham FS (1949) Comparative studies of decomposition rates of organic matter in temperate and tropical regions. Soil Sei 68:419–432CrossRefGoogle Scholar
  21. Mälkönen E (1974) Annual primary production and nutrient cycle in some Scots pine stands. Commun Inst Forest Fenn 84:5Google Scholar
  22. Marques MC (1999) Eintrag von luftgetragenen partikelbebundenen Spurenstoffen in Wälder durch trockene Deposition. Wissenschaftlicher Verlag, BerlinGoogle Scholar
  23. Matzner E (1988) Der Stoffumsatz zweier Waldökosysteme im Soiling. Ber Forschungszentrums Waldökosysteme/Waldsterben A40:l–217Google Scholar
  24. Matzner E, Khanna PK, Meiwes KJ, Lindheim J, Prenzel J, Ulrich B (1982) Elementflüsse in Waldökosystemen im Soiling — Datendokumentation. Göttinger Bodenkd Ber 71: 1–267Google Scholar
  25. Meesenburg H, Meiwes KJ, Bartens H (1999) Veränderung der Elementvorräte im Boden von Buchen- und Fichtenökosystemen in Soiling. Ber Freiburger Forst Forsch 7:109–114Google Scholar
  26. Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472CrossRefGoogle Scholar
  27. Meiwes KJ, Meesenburg H, Bartens H, Rademacher P, Khanna PK (2002) Accumulation of humus in the litter layer of forest stands at Soiling. Possible causes and significance for the nutrient cycling. Forst Holz 13–14:428–433 (in German, English summary)Google Scholar
  28. Persson T, Karlsson PS, Seyferth U, Sjöberg RM, Rudebeck A (2000) Carbon mineralization in European forest soils. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies, vol 142. Springer, Berlin Heidelberg New York, pp 257–275CrossRefGoogle Scholar
  29. Stevenson F J (1982) Humus chemistry. Genesis, composition, reactions. Wiley, New YorkGoogle Scholar
  30. Waksman SA (1936) Humus. Williams and Wilkins, BaltimoreGoogle Scholar
  31. Wardle DA, Zachrisson O, Hörnberg G, Gallet C (1997) The influence of Island area on ecosystem properties. Science 277:1296–1299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • B. Berg

There are no affiliations available

Personalised recommendations