Phyllosphere Ecology in a Changing Environment: The Role of Insects in Forest Ecosystems

  • B. Stadler
  • B. Michalzik
Part of the Ecological Studies book series (ECOLSTUD, volume 172)


A major challenge to understanding the role of species in ecosystems (Lawton 1994) is to collect and filter those pieces of information from different levels of organization that are likely to affect ecosystem functioning and maintenance of key processes; for example, the approaches that link ecosystem and population ecology, evolution and system ecology (Loehle and Pechmann 1988) or different scales from leaves to landscapes (Holling 1992; Levin 1992; Wiens 1995). However, integrated approaches are notoriously difficult to pursue. In addition, the approaches of conventional research have different aims. For example, ecosystem ecologists are often more concerned with average rates of flow for a particular period of time, viewing an ecosystem as a gigantic ‘black box’ (Grimm 1995) whose behaviour is independent of its history (Higashi and Burns 1991) (engineer approach). Ecologists, in contrast, working with organisms, populations or communities, are concerned with specific adaptations, species interactions, community structures and population dynamics in an evolutionary context (organismic approach).


Forest Floor Dissolve Organic Carbon Concentration Dissolve Organic Nitrogen Phytophagous Insect Infested Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber JD, Ollinger SV, Driscoll CT, Likens GE, Holmes RT, Freuder RJ, Goodale CL (2001) Inorganic nitrogen losses from a forested ecosystem in response to physical, chemical, biotic, and climatic perturbations. Ecosystems 5:648–658CrossRefGoogle Scholar
  2. Allen EA, Humble LM (2002) Nonindigenous species introductions: a threat to Canada’s forests and forest economy. Can J Plant Pathol 24:103–110CrossRefGoogle Scholar
  3. Barbosa P, Schaefer PW (1997) Comparative analysis of patterns of invasion and spread of related lymantriids. In: Watt AD, Stork NE, Hunter MD (eds) Forests and insects. Chapman and Hall, London, pp 153–175Google Scholar
  4. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JE, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol 8:1–16CrossRefGoogle Scholar
  5. Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–1878CrossRefGoogle Scholar
  6. Bonkowski M, Geoghegan IE, Birch ANE, Griffiths BS (2001) Effects of soil decomposer invertebrates (protozoa and earthworms) on an above-ground phytophagous insect (cereal aphid) mediated through changes in the host plant. Oikos 95:441–450CrossRefGoogle Scholar
  7. Buse AJ, Good EG, Dury S, Perrins CM (1998) Effects of elevated temperature and carbon dioxide on the nutritional quality of leaves of oak (Quercus robur L.) as food of the winter moth (Operophtera brumata L.). Funct Ecol 12:742–749CrossRefGoogle Scholar
  8. Carlisle A, Brown AHF, White EJ (1966) The organic matter and nutrient elements in the precipitation beneath a sessile oak (Quercus petraea) canopy. J Ecol 54:87–98CrossRefGoogle Scholar
  9. Currie WS, Aber JD, McDowell WH, Boone RD, Magill AH (1996) Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry 35:471–505CrossRefGoogle Scholar
  10. Dixon AFG (1971) The role of aphids in wood formation. I. The effect of the sycamore aphid Drepanosiphum plantanoides (Sehr.) (Aphididae), on the growth of sycamore, Acerpseudoplantanus (L.). J Appl Ecol 8:165–179CrossRefGoogle Scholar
  11. Dixon AFG (2003) Climate change and phenological asynchrony. Ecol Entomol 28:380–381CrossRefGoogle Scholar
  12. Dixon AFG, Kindlmann P, Leps J, Holman J (1987) Why there are so few species of aphids, especially in the tropics. Am Nat 129:580–592CrossRefGoogle Scholar
  13. Docherty M, Salt DT, Holopainen JK (1997) The impacts of climate change and pollution on forest pests. In: Watt AD, Stork NE, Hunter MD (eds) Forests and insects. Chapman and Hall, London, pp 229–247Google Scholar
  14. Eckloff W (1972) Beitrag zur Ökologie und forstlichen Bedeutung bienenwirtschaftlich wichtiger Rindenläuse. Z Angew Entomol 70:134–157CrossRefGoogle Scholar
  15. Findlay S, Carreiro M, Krischik V, Jones CG (1996) Effects of damage to living plants on leaf litter quality. Ecol Appl 6:269–275CrossRefGoogle Scholar
  16. Gange AC, Bower E, Brown VK (2002) Differential effects of insect herbivory on arbus-cular mycorrhizal colonization. Oecologia 131:103–112CrossRefGoogle Scholar
  17. Grimm NB (1995) Why link species and ecosystems? A perspective from ecosystem ecology. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman and Hall, London, pp 5–15CrossRefGoogle Scholar
  18. Guggenberger G, Zech W (1994) Composition and dynamics of dissolved organic carbohydrates and lignin-degradation products in two coniferous forests, N.E. Bavaria, Germany. Soil Biol Biochem 26:19–27CrossRefGoogle Scholar
  19. Gundersen P, Emmett BA, Kjonaas OJ, Koopmans CJ, Tietema A (1998) Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For Ecol Manage 101:37–55CrossRefGoogle Scholar
  20. Hassell MP (2000) The spatial and temporal dynamics of host-parasitoid interactions. Oxford University Press, OxfordGoogle Scholar
  21. Heimbach U (1986) Freilanduntersuchungen zur Honigtauabgabe zweier Zierlausarten (Aphidina). J Appl Entomol 101:396–413CrossRefGoogle Scholar
  22. Herzig J (1937) Ameisen und Blattläuse. Z Angew Entomol 24:367–435CrossRefGoogle Scholar
  23. Higashi M, Burns TP (1991) Theoretical studies of ecosystems: the network approach. Cambridge University Press, CambridgeGoogle Scholar
  24. Holling CS (1992) Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol Monogr 62:447–502CrossRefGoogle Scholar
  25. Hunter MD (2001) Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric Forest Entomol 3:77–84CrossRefGoogle Scholar
  26. Kareiva PM, Kingsolver JG, Huey RB (1993) Biotic interactions and global change. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  27. Kidd NAC (1990) The population dynamics of the large pine aphid, Cinara pinea (Mordv.). II. Simulation of field populations. Res Popul Ecol 32:209–226CrossRefGoogle Scholar
  28. Kindlmann P, Dixon AFG (1996) Population dynamics of tree-dwelling aphid: individuals to populations. Ecol Model 89:23–30CrossRefGoogle Scholar
  29. Koricheva J, Larsson S, Haukioja E (1998) Insect performance on experimentally stressed woody plants: a meta-analysis. Annu Rev Entomol 43:195–216PubMedCrossRefGoogle Scholar
  30. Lawton JH (1994) What do species do in ecosystems? Oikos 71:364–374Google Scholar
  31. Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967CrossRefGoogle Scholar
  32. Levin SA (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–436CrossRefGoogle Scholar
  33. Levin SA (1999) Fragile dominion. Perseus, BoulderGoogle Scholar
  34. Liebhold AM, Elkinton JS, Williams D, Muzika RM (2000) What causes outbreaks of gypsy moth in North America? Popul Ecol 42:257–266CrossRefGoogle Scholar
  35. Llewellyn M (1972) The effects of the lime aphid Eucallipterus tiliae L. (Aphididae), on the growth of the lime Tilia x vulgaris Hayne I. Energy requirements of the aphid population. J Appl Ecol 9:261–282CrossRefGoogle Scholar
  36. Llewellyn M (1975) The effects of the lime aphid Eucallipterus tiliae L. (Aphididae) on the growth of the lime (Tilia x vulgaris Hayne). J Appl Ecol 12:15–23CrossRefGoogle Scholar
  37. Loehle C, Pechmann JK (1988) Evolution: the missing ingredient in system ecology. Am Nat 132:884–899CrossRefGoogle Scholar
  38. Lovett G, Ruesink A (1995) Carbon and nitrogen mineralization from decomposing gypsy moth frass. Oecologia 104:133–138CrossRefGoogle Scholar
  39. Lowman MD (1995) Forest canopies. Academic Press, San DiegoGoogle Scholar
  40. Lowman MD, Wittman PK (1996) Forest canopies: methods, hypotheses, and future directions. Annu Rev Ecol Syst 27:55–81CrossRefGoogle Scholar
  41. Michalzik B, Stadler B (2000) Effects of phytophagous insects on soil solution chemistry: herbivores as switches for nutrient dynamics in the soil. Basic Appl Ecol 1:117–123CrossRefGoogle Scholar
  42. Michalzik B, Kalbitz K, Park J-H, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic matter — a synthesis for temperate forests. Biogeochemistry 52:173–205CrossRefGoogle Scholar
  43. Müller H (1956) Können Honigtau liefernde Baumläuse (Lachnidae) ihre Wirtspflanzen schädigen? Z Angew Entomol 39:168–177CrossRefGoogle Scholar
  44. Müller T, Müller M, Behrendt U, Stadler B (2004) Diversity of culturable phyllosphere bacteria on beech and oak: effects of lepidopterous larvae. Microb Res 158:291–297CrossRefGoogle Scholar
  45. Neinhuis C, Barthlott W (1998) Seasonal changes of leaf surface contamination in beech, oak, and gingko in relation to leaf micromorphology and wettability. New Phytol 138:91–98CrossRefGoogle Scholar
  46. Novak H (1989) Untersuchungen über Produktion und Konsum von Honigtau in ausgewählten Hecken Oberfrankens. Diploma Thesis, Universität Bayreuth, GermanyGoogle Scholar
  47. Quails RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586CrossRefGoogle Scholar
  48. Royama T (1996) Analytical population dynamics. Chapman and Hall, LondonGoogle Scholar
  49. Scheu S (2001) Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl Ecol 2:3–13CrossRefGoogle Scholar
  50. Scheurer S (1964) Zur Biologie einiger Fichten bewohnender Lachnidenarten (Homoptera, Aphidina). Z Angew Entomol 53:153–178CrossRefGoogle Scholar
  51. Schneider SH (1993) Scenarios of global warming. In: Kareiva PM, Kingsolver JG, Huey RB (eds) Biotic interactions and global change. Sinauer Associates, Sunderland, Massachusetts, pp 9–23Google Scholar
  52. Schowalter TD (2000) Insect ecology. An ecosystem approach. Academic Press, New YorkGoogle Scholar
  53. Schowalter TD, Hargrove WW, Crossley DA (1986) Herbivory in forested ecosystems. Annu Rev Entomol 31:177–196CrossRefGoogle Scholar
  54. Schulze E-D (2000) The carbon and nitrogen cycle of forest ecosystems. In: Schulze E-D (ed) Carbon and nitrogen cycling in European forest ecosystems, vol 142. Springer, Berlin Heidelberg New York, pp 3–13CrossRefGoogle Scholar
  55. Seastedt TR, Crossley DA (1984) The influence of arthropods on ecosystems. BioScience 34:157–161CrossRefGoogle Scholar
  56. Seastedt TR, Crossley DA, Hargrove WW (1983) The effects of low-level consumption by canopy arthropods on the growth and nutrient dynamics of black locust and red maple trees in the southern Appalachians. Ecology 64:1040–1048CrossRefGoogle Scholar
  57. Shure DJ, Mooreside PD, Ogle SM (1998) Rainfall effects on plant-herbivore processes in an upland oak forest. Ecology 79:604–617Google Scholar
  58. Spiller NJ, Llewellyn M (1987) Honeydew production and sap ingestion by the cereal aphids Rhopalosiphum padi and Metopolophium dirhodum on seedlings of resistant and susceptible wheat species. Ann Appl Biol 110:585–590CrossRefGoogle Scholar
  59. Stadler B, Müller T (2000) Effects of herbivores on epiphytic micro-organisms in canopies of forest trees. Can J For Res 30:631–638CrossRefGoogle Scholar
  60. Stadler B, Michalzik B, Müller T (1998) Linking aphid ecology with nutrient fluxes in a coniferous forest. Ecology 79:1514–1525CrossRefGoogle Scholar
  61. Stadler B, Solinger S, Michalzik B (2001a) Insect herbivores and the nutrient flow from the canopy to the soil. Oecologia 126:104–113CrossRefGoogle Scholar
  62. Stadler B, Müller T, Sheppard L, Crossley A (2001b) Effects of Elatobium abietinum on nutrient fluxes in Sitka spruce canopies receiving elevated nitrogen and sulphur deposition. Agric For Entomol 3:253–261CrossRefGoogle Scholar
  63. Swank WT, Waide JB, Crossley DA, Todd RL (1981) Insect defoliation enhances nitrate export from forest systems. Oecologia 51:297–299CrossRefGoogle Scholar
  64. Tsai CS, Killham K, Cresser MS (1997) Dynamic response of microbial biomass, respiration rate and ATP to glucose additions. Soil Biol Biochem 29:1249–1256CrossRefGoogle Scholar
  65. Varley GC, Gradwell GR, Hassell MP (1973) Insect population ecology. Blackwell, OxfordGoogle Scholar
  66. Wardle A (2002) Communities and ecosystems: linking the aboveground and below-ground components. Princeton University Press, PrincetonGoogle Scholar
  67. Watt AD, McFarlane AM (2002) Will climate change have a different impact on different trophic levels? Phenological development of winter moth Operophtera brumata and its host plant. Ecol Entomol 27:254–256CrossRefGoogle Scholar
  68. Wellenstein G (1961) Honigtaubildende Forstinsekten und ihre wirtschaftliche Bedeutung. In: Schwenke W (ed) Forstwissenschaft im Dienste der Praxis. BLV, Munich, pp 184–199Google Scholar
  69. Wiens JA (1995) Landscape mosaics and ecological theory. In: Hansson L, Fahrig L, Merriam G (eds) Mosaik landscapes and ecological processes. Chapman and Hall, London, pp 1–26CrossRefGoogle Scholar
  70. Zoebelein G (1954) Versuche zur Feststellung des Honigtauertrages von Fichtenbeständen mit Hilfe von Waldameisen. Z Angew Entomol 36:358–362CrossRefGoogle Scholar
  71. Zwölfer W (1952) Die Waldbienenweide und ihre Nutzung als forstentomologisches Problem. Verh Dtsch Ges Angew Entomol 12:1–15Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • B. Stadler
  • B. Michalzik

There are no affiliations available

Personalised recommendations