Fog Deposition and its Role in Biogeochemical Cycles of Nutrients and Pollutants

  • T. Wrzesinsky
  • C. Scheer
  • O. Klemm
Part of the Ecological Studies book series (ECOLSTUD, volume 172)


It has been recognized for about 100 years now that the deposition of fog (occult deposition) can play an important role in the hydrological cycles of various mountainous ecosystems (Marloth 1906; Linke 1916; Grunow 1955; Baumgartner 1958, 1959). Considering the fact that the concentrations of trace substances in fog water are typically higher than those of comparable rain water, it becomes evident that the deposition of nutrients and pollutants through fog deposition may be as high as, or even higher than, the deposition through rainwater (e.g., Saxena and Lin 1990). There is a large variability in physical and chemical conditions of fog events, so that any estimates of their potential roles in biogeochemical cycles must be studied individually for each site and each time period of interest.


Biogeochemical Cycle Deposition Flux Liquid Water Content Droplet Size Distribution Diploma Thesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumgardner RE, Selma SI, Lavery TF, Rogers CM, Mohnen VM (2003) Estimates of cloud water deposition at mountain acid deposition program sites in the Appalachian Mountains. J Air Waste Manage Assoc 53:291–308CrossRefGoogle Scholar
  2. Baumgartner A (1958) Nebel und Niederschlag als Standortfaktor am Großen Falkenstein (Bayrischer Wald). Forstwiss Centralbl 13:257–272CrossRefGoogle Scholar
  3. Baumgartner A (1959) Das Wasserangebot aus Regen und Nebel sowie die Schneeverteilung in den Wäldern am Großen Falkenstein (Bayrischer Wald). Wald Wasser 3:45–54Google Scholar
  4. Best AC (1951) Drop-size distribution in cloud and fog. Q J R Meteorol Soc 77:418–426CrossRefGoogle Scholar
  5. Beswick KM, Hargreaves K, Gallagher MW, Choularton TW, Fowler D (1991) Size-resolved measurements of cloud droplet deposition velocity to a forest canopy using an eddy correlation technique. Q J R Meteorol Soc 117:623–645CrossRefGoogle Scholar
  6. Bopp S (2000) Entwicklung eines Biotestverfahrens zur Toxizitätsabschätzung von Stoffgemischen in Nebelproben. Diploma Thesis, University of BayreuthGoogle Scholar
  7. Burkard R, Eugster W, Wrzesinsky T, Klemm O (2002) Vertical divergences of fogwater fluxes above a spruce forest. Atmos Res 64:133–145CrossRefGoogle Scholar
  8. Daube BC, Flagan RC, Hoffmann MR (1987) Active cloudwater collector. Patent no 4697462:1–13. United States Patent and Trademark Office, ArlingtonGoogle Scholar
  9. Deirmendjian D (1969) Electromagnetic scattering on spherical polydispersions. Elsevier, New YorkGoogle Scholar
  10. Grießbaum F (2002) Chemistry of cloud interstitial particles: sample collection for ion chromatography (IC), scanning electron microscopy (SEM), and carbon (TC, EC, BC, and OC) analysis. Diploma Thesis, University of BayreuthGoogle Scholar
  11. Grunow J (1955) Der Nebelniederschlag im Bergwald. Forstwiss Centralbl 74:21–36CrossRefGoogle Scholar
  12. Herterich R (1987) Eignung und Anwendung von Rotating Arm Collectoren zur Bestimmung von Nebeleigenschaften — Flüssigwassergehalt, ionische Spurenstoffe, Wasserstoffperoxid. Diploma Thesis, University of BayreuthGoogle Scholar
  13. Hottenroth S (2001) Nitrophenole im Nebel: Analytik und Interpretation atmosphärischer Parameter. Diploma Thesis, University of BayreuthGoogle Scholar
  14. Joslin JD, Mueller SF, Wolfe MH (1990) Tests of models of cloudwater deposition to forest canopies using artificial and living collectors. Atmos Environ 24A:3007–3019Google Scholar
  15. Kowalski AS, Anthoni PM, Vong RJ, Delany AC, Maclean GD (1997) Development and evaluation of a system for ground-based measurement of cloud liquid water turbulent fluxes. J Atmos Ocean Technol 14:468–479CrossRefGoogle Scholar
  16. Linke F (1916) Niederschlagsmessungen unter Bäumen. Meteorol Z 33:140–141Google Scholar
  17. Lovett G (1984) Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest. Atmos Environ 18:361–371CrossRefGoogle Scholar
  18. Lovett G, Reiners W (1986) Canopy structure and cloud water deposition in a subalpine coniferous forest. Tellus 38B:319–327CrossRefGoogle Scholar
  19. Marioth H (1906) Über Wassermengen welche Sträucher uns Bäume aus treibendem Nebel und Wolken Auffangen. Meteorol Z 23:547–553Google Scholar
  20. Mueller S (1991) Estimating cloud water deposition to subalpine spruce-fir forests I. Modifications to an existing model. Atmos Environ 25A:1093–1104Google Scholar
  21. Mueller S, Joslin L, Wolfe M (1991) Estimating cloud water deposition to subalpine spruce-fir forests I. Model testing. Atmos Environ 25A:1105–1122Google Scholar
  22. Pahl S (1996) Feuchte Deposition auf Nadelwälder in den Hochlagen der Mittelgebirge. Berichte des Deutschen Wetterdienstes, OffenbachGoogle Scholar
  23. Pahl S, Winkler P (1995) Höhenabhängigkeit der Spurenstoffdeposition durch Wolken auf Wälder. Abschlussbericht, Deutscher Wetterdienst, Meteorologischen Observatorium HohenpeißenbergGoogle Scholar
  24. Richartz H (1989) Nitrierte Phenole im Nebel. Diploma Thesis, University of BayreuthGoogle Scholar
  25. Richartz H, Reischl A, Trautner F, Hutzinger O (1990) Nitrated phenols in fog. Atmos Environ 24A:3067–3071Google Scholar
  26. Rinne HJI, Delany JP, Greenberg JP, Guenther AB (2000) A true eddy accumulation system for trace gas fluxes using disjunct eddy sampling method. J Geophys Res 105:24791–24798CrossRefGoogle Scholar
  27. Römpp A (1999) Haloacetate und Nitrophenole im Nebel. Diploma Thesis, University of BayreuthGoogle Scholar
  28. Saxena VK, Lin N-H (1990) Cloud chemistry measurements and estimates of acidic deposition on an above cloudbase coniferous Forest. Atmos Environ 24A:329–253Google Scholar
  29. Thalmann E, Burkard R, Wrzesinsky T, Eugster W, Klemm O (2002) Ion fluxes from fog and rain to an agricultural and a forest ecosystem in Europe. Atmos Res 64:147–158CrossRefGoogle Scholar
  30. Trautner F (1988) Entwicklung und Anwendung von Meßsystemen zur Untersuchung der chemischen und physikalischen Eigenschaften von Nebelwasser und dessen Deposition auf Fichten. Dissertation, University of BayreuthGoogle Scholar
  31. Trautner F, Reischl A, Hutzinger O (1989) Nitrierte Phenole im Nebelwasser — Beitrag ur Waldschadensforschung. USSF-Z Umweltchem Ökotox 3:10–11CrossRefGoogle Scholar
  32. Vong RJ, Kowalski AS (1995) Eddy correlation measurements of size dependent cloud droplet turbulent fluxes to complex terrain. Tellus 47B:331–332Google Scholar
  33. Weigl W (2001) Toxizitätsgeleitete Identifizierung von organischen Substanzen und Bestimmung des Anteils an Metalltoxizität im Nebel. Diploma Thesis, University of BayreuthGoogle Scholar
  34. Wrzesinsky T (1998) Sommerlicher Nebel im Fichtelgebirge: Häufigkeit und chemische Zusammensetzung. Diploma Thesis, University of BayreuthGoogle Scholar
  35. Wrzesinsky T (2003) Direkte Messung und Bewertung des nebelgebundenen Eintrags von Wasser und Spurenstoffen in ein montanes Ökosystem. Dissertation, University of BayreuthGoogle Scholar
  36. Wrzesinsky T, Klemm O (2000) Summertime fog chemistry at a mountainous site in central Europe. Atmos Environ 34:1487–1496CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • T. Wrzesinsky
  • C. Scheer
  • O. Klemm

There are no affiliations available

Personalised recommendations