Skip to main content

Modeling the Vegetation Atmospheric Exchange with a Transilient Model

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 172))

Abstract

The interaction between the atmosphere and the soil-vegetation system in ecological models is often modeled with the Penman-Monteith (PM) approach (Monteith 1980) which is based on the energy balance equation. This method describes the interaction with the surface by a resistance approach and relies on the constant flux layer approach which is equivalent to the classical K approach (see, e.g., Stull 1988; Kramm 1995). The PM method is mainly forced by radiation and includes some simplification which does not generally allow the use of short averaging periods in the order of one hour. The constant flux layer assumption is not valid to describe the exchange processes for a forest canopy (Shaw et al. 1974; Raupach et al. 1991; Kaimal and Finnigan 1994), with typical effects like counter gradients (Denmead and Bradley 1985), coherent structures (Amiro 1990) or mixing layers (Raupach et al. 1996). The big leaf approach or the PM method cannot describe the effects of physical processes behind such features. Models using more suitable descriptions of energy transfer, thermodynamics and turbulence (e.g. higher order closure formulations, see Kurata (1982); Meyers and PawU 1986,1987) yield results that better agree with measured data from the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amiro BD (1990) Comparison of turbulence statistics within three boreal forest canopies. Boundary-Layer Meteorol 51:99–121

    Article  Google Scholar 

  • Buck AL (1981) New equations for computing vapour pressure and enhancement factor. J Appl Meteorol 20:1527–1532

    Article  Google Scholar 

  • Constantin J, Inclän MG, Raschendorfer M (1998) The energy budget of a spruce forest: field measurements and comparison with the forest-land- atmosphere model (FLAME). J Hydrol 212/213:22–35

    Article  Google Scholar 

  • Denmead DT, Bradley EF (1985) Flux-gradient relationships in a forest canopy. In: Hutchison BA, Hicks BB (eds) The forest-atmosphere interaction. Reidel, Dordrecht, pp 421–442

    Google Scholar 

  • Dlugi R, Berger M, Kramm G, Rube S (2002) Modellierung von Austauschprozessen und chemischen Reaktionen im Vergleich mit Messdaten. Bericht zum 6. Teil des BMBF Vorhabens ECHO, FZ-Jülich. http://www.fe-juelich.de/icg/icg-ii/ECHO/echo.ger.html/icg/icg-ii/ECHO/echo.ger.html

    Google Scholar 

  • FitzPatrick E A (1980) Soils: their formation, classification and distribution. Longman, New York

    Google Scholar 

  • Foken T (2003) Angewandte Meteorologie, mikrometeorologische Methoden. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gerstberger P (2001) Die BITÖK-Untersuchungsflächen im Fichtelgebirge und Steigerwald. Bayreuther Forum Ökol 90:193

    Google Scholar 

  • Inclän MG (1996) Modellierung nicht lokaler Austauschprozesse in und über hohen Pflanzenbeständen. PhD Thesis, University (LMU) Munich, Germany

    Google Scholar 

  • Inclän MG, Stull RB, Dlugi R (1996) Application of transilient turbulence theory of forest canopies. Boundary-Layer Meteorol 79:315–344

    Article  Google Scholar 

  • Inclän MG, Dlugi R, Zeiger M (1998) Vorbereitung und Validierungsläufe des Waldmod-elles FLAME mit Daten des Experimentes LINEX-97/2, Teil 2: Vergleich zwischen gemessenen und modellierten turbulenten Flüssen über dem Kiefernbestand. Abschlußbericht des DWD-Werkvertrages, 60 pp. (Available from R. Dlugi at rdlugi@gmx.de)

    Google Scholar 

  • Inclän MG, Schween J, Dlugi R (1999) Estimation of volatile organic compound fluxes using the forest-land-atmosphere model (FLAME). J Appl Meteorol 38:913–921

    Article  Google Scholar 

  • Jacobs CMJ (1994) Direct impact of atmospheric CO2 enrichment on regional transpiration. PhD Thesis, Department of Meteorology, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York

    Google Scholar 

  • Katul GG, Lai C-T, Siqueira M, Schäfer K, Albertson JD, Wesson KH, Ellswoth D, Oren R (2001) Inferring scalar sources and sinks within canopies using forward and inverse methods. In: Lakshmi V, Albertson J, Schaake J (eds) Land surface hydrology, meteorology and climate: observations and modeling. Water science and application, vol 3. American Geophysical Union, Washington, DC, pp 13–15

    Google Scholar 

  • Kramm G (1995) Zum Austausch von Ozon und reaktiven Stickstoffverbindungen zwischen Atmosphäre und Biosphäre. Maraun Verlag, Frankfurt

    Google Scholar 

  • Kurata K (1982) Theoretische Untersuchung der Turbulenz innerhalb eines Pflanzenbestandes. Ber Inst Meteorol Climatol 20. University Hannover

    Google Scholar 

  • Mangold A (1999) Untersuchung der lokalen Einflüsse auf Turbulenzmessungen der Station Weidenbrunnen. Diploma Thesis, University Bayreuth

    Google Scholar 

  • McNaughton KG, Spriggs TW (1986) A mixed layer model for regional evaporation. Boundary-Layer Meteorol 34:243–262

    Article  Google Scholar 

  • Meyers TP, Pawu KT (1986) Testing a higher-order closure model for modelling airflow within and above plant canopies. Boundary-Layer Meteorol 37:297–311

    Article  Google Scholar 

  • Meyers TP, Pawu KT (1987) Modelling the plant canopy micrometeorology with higher-order closure principles. Agric For Meteorol 41:143–163

    Article  Google Scholar 

  • Monteith JL (1980) Principles of environmental physics. Arnold, London

    Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44:1–25

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78:351–382

    Article  Google Scholar 

  • Ross RJ, Elliott WP (1996) Tropospheric water vapor climatology and trends over North America: 1973–1993. J Climatol 9:3561–3574

    Article  Google Scholar 

  • Shaw RH, Siversides RH, Thurtell GW (1974) Some observation of turbulence and turbulent transport within and above plant canopies. Boundary-Layer Meteorol 5:429–449

    Article  Google Scholar 

  • Stull RB (1984) Transilient turbulence theory, part 1. The concept of eddy mixing across finite distances. J Atmos Sci 41:3351–3367

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht

    Book  Google Scholar 

  • Stull RB (1993) Review of non local mixing in turbulent atmospheres: transilient turbulence theory. Boundary-Layer Meteorol 62:21–96

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, M., Dlugi, R., Foken, T. (2004). Modeling the Vegetation Atmospheric Exchange with a Transilient Model. In: Matzner, E. (eds) Biogeochemistry of Forested Catchments in a Changing Environment. Ecological Studies, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06073-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06073-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05900-1

  • Online ISBN: 978-3-662-06073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics