Structure-Biodegradability Relationships for Chlorinated Dibenzo-p-Dioxins and Dibenzofurans

  • Jirí Damborsky
  • Mary Lynam
  • Michal Kuty
Part of the Environmental Intelligence Unit book series (EIU)


Biotransformation and biodegradation of chemical compounds are the major processes which determine the fate of organic compounds in aquatic and terrestrial environments. The susceptibility of a chemical compound to undergo decomposition by the action of indigenous microorganisms is a very important property which must be considered to estimate the safety of the compound for biota and the environment. In addition, an understanding of biodegradation mechanisms and identification of those factors which limit the biodegradation rates is desirable for the development of bioremediation technologies suitable for cleanup of contaminated soil and water.


Molecular Descriptor Score Plot Reductive Dechlorination Environ Toxicol Halo Alkane Dehalogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander M. Biodegradation of chemicals of environmental concern. Science 1981; 211: 132–138.CrossRefGoogle Scholar
  2. 2.
    Cowan CE, Federle TW, Larson RJ et al. Impact of biodegradation test methods on the development and applicability of biodegradation QSARs. SAR QSAR Environ Res 1996; 5: 37–49.CrossRefGoogle Scholar
  3. 3.
    Damborsky J. A mechanistic approach to deriving quantitative structure-activity relationship models for microbial degradation of organic compounds. SAR QSAR Environ Res 1996; 5: 27–36.CrossRefGoogle Scholar
  4. 4.
    Organization for Economic Co-operation and Development. Structure-Activity Relationships for Biodegradation. OECD Environment Monographs 68. Paris: OECD, 1993.Google Scholar
  5. 5.
    Dearden JC. Descriptors and techniques for quantitative structure-biodegradability studies. SAR QSAR Environ Res 1996; 5: 17–26.CrossRefGoogle Scholar
  6. 6.
    Moore SA, Pope JD, Barnett JT et al. Structure-activity relationships and estimation techniques for biodegradation of xenobiotics. US EPA Report 600/3–98/080. Athens: US EPA, 1989.Google Scholar
  7. 7.
    Parsons JR, Govers HAJ. Quantitative structure-activity relationships for biodegradation. Ecotoxicol Environ Safety 199o; 19: 212–227.Google Scholar
  8. 8.
    Degner P, Nendza M, Klein W. Predictive QSAR models for estimating biodegradation of aromatic compounds. Sci Total Environ 1991; 109 /110: 253–259.CrossRefGoogle Scholar
  9. 9.
    Mani SV, Connell DW, Braddock RD. Structure activity relationships for the prediction of biodegradability of environmental pollutants. Crit Rev Environ Control 1991; 21: 217–236.CrossRefGoogle Scholar
  10. 10.
    Peijnenburg W. Structure-activity relationships for biodegradation: a critical review. Pure Appl Chem 1994; 66: 1931–1941.CrossRefGoogle Scholar
  11. 11.
    Peijnenburg WJGM, Karcher W. Proceedings of the Workshop on Quantitative Structure Activity Relationships for Biodegradation. RIVM Report 719101021. Bilthoven: RIVM, 1995.Google Scholar
  12. 12.
    Peijnenburg WJGM, Damborsky J. Biodegradability Prediction. Dordrecht: Kluwer Academic Publishers, 1996: pp. 143.CrossRefGoogle Scholar
  13. 13.
    Okey RW, Bogan RH. Apparent involvement of electronic mechanisms in limiting the microbial metabolism of pesticides. J Water Pollut Control Fed 1965; 37: 692–712.Google Scholar
  14. 14.
    Dorn E, Knackmuss HJ. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J 1978; 174: 85–94.Google Scholar
  15. 15.
    Wolfe NL, Paris DF, Steen WC et al. Correlation of microbial degradation rates with chemical structure. Environ Sci Technol 1980; 14: 1143–1144.CrossRefGoogle Scholar
  16. 16.
    Paris DF, Wolfe NL, Steen WC. Structure-activity relationships in microbial transformation of phenols. Appl Environ Microbiol 1982; 44: 153–158.Google Scholar
  17. 17.
    Paris DF, Wolfe NL, Steen WC et al. Effect of phenol molecular structure on bacterial transformation rate constants in pond and river samples. Appl Environ Microbiol 1983; 451153–1155.Google Scholar
  18. 18.
    Paris DF, Wolfe NL, Steen WC. Microbial transformation of esters of chlorinated carboxylic acids. Appl Environ Microbiol 1984; 47: 7–11.Google Scholar
  19. 19.
    Paris DF, Wolfe NL. Relationship between properties of a series of anilines and their transformation by bacteria. Appl Environ Microbiol 1987; 53: 911–916.Google Scholar
  20. 20.
    Banerjee S, Howard PH, Rosenberg AM et al. Development of a general kinetic model for biodegradation and its application to chlorophenols and related compounds. Environ Sci Technol 1984; 18: 416–422.CrossRefGoogle Scholar
  21. 21.
    Pitter P. Correlation between the structure of aromatic compounds and the rate of their biological degradation. Coll Czech Chem Com 1984; 49: 2891–2896.CrossRefGoogle Scholar
  22. 22.
    Babeu L, Vaishnav DD. Prediction of biodegradability for selected organic chemicals. J Industr Microbiol 1987; 27–115.Google Scholar
  23. 23.
    Kanazawa J. Biodegradability of pesticides in water by microbes in activated sludge, soil and sediment. Environ Monitor Assess 1987; 9: 57–70.CrossRefGoogle Scholar
  24. 24.
    Kawamoto K, Urano K. Parameters for predicting fate of organochlorine pesticides in the environment. (iii) biodegradation rate constants. Chemosphere 1990; 21: 1141–1152.CrossRefGoogle Scholar
  25. 25.
    Peijnenburg WJGM, Hart MJ, den Hollander HA et al. QSARs for predicting reductive transformation rate constants of halogenated aromatic hydrocarbons in anoxic sediment systems. Environ Toxicol Chem 1992; 11: 301–314.CrossRefGoogle Scholar
  26. 26.
    Okey RW, Stensel HD. A QSBR development procedure for aromatic xenobiotic degradation by unacclimated bacteria. Water Environ Res 1993; 65772–780.Google Scholar
  27. 27.
    Peijnenburg WJGM, Beer KGM, Hollander HA et al. Kinetics, products, mechanisms and QSARs for the hydrolytic transformation of aromatic nitriles in ananerobic sediment slurries. Environ Toxicol Chem 1993; 12: 1149–1161.CrossRefGoogle Scholar
  28. 28.
    Okey RW, Stensel HD. A QSAR-based biodegradability model-A QSBR. Water Res 1996; 30: 2206–2214.CrossRefGoogle Scholar
  29. 29.
    Banerjee S. Interrelationship between biodegradability, toxicity and structure of chlorophenols. In: Kaiser KLE, ed. QSAR in Environmental Toxicology-II. Hamilton: D. Reidel Publishing Company, 1987: 17–23.CrossRefGoogle Scholar
  30. 30.
    Damborsky J, Schultz TW. Comparison of the QSAR models for toxicity and biodegradability of anilines and phenols. Chemosphere 1997; 34: 429–446.CrossRefGoogle Scholar
  31. 31.
    Rorije E, Langenberg JH, Richter J et al. Modelling reductive dehalogenation with quantum chemically derived descriptors. SAR QSAR Environ Res 1995; 4: 237–252.CrossRefGoogle Scholar
  32. 32.
    Rorije E, Eriksson L, Verboom H et al. Predicting reductive transformation rates of halogenated aliphatic compounds using different QSAR approaches. ESPREnviron Sci Pollut Res 1997; 4: 47–54.CrossRefGoogle Scholar
  33. 33.
    Damborsky J, Manova K, Kuty M. A mechanistic approach to deriving quantitative structure-biodegradability relationships. A case study: dehalogenation of haloaliphatic compounds. In: Peijnenburg WJGM, Damborsky J, eds. Biodegradability Prediction. Dordrecht: Kluwer Academic Publishers, 1996: 75–92.CrossRefGoogle Scholar
  34. 34.
    Damborsky J, Manova K, Berglund A et al. Biotransformation of chloro-and bromoalkenes by crude extracts of Rhodococcus erythropolis Y2. Advances Environ Res 1997; 1: 50–57.Google Scholar
  35. 35.
    Damborsky J, Nyandoroh MG, Nemec M et al. Some biochemical properties and classification of a range of bacterial haloalkane dehalogenases. Biotech Appl Biochem 1997; 26: 19–25.Google Scholar
  36. 36.
    Nagata Y, Miyauchi K, Damborsky J et al. Purification and characterization of haloalkane dehalogenase of a new substrate class from a g-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Appl Environ Microbiol 1997; 633707–3710.Google Scholar
  37. 37.
    Damborsky J, Bull AT, Hardman DJ. Homology modelling of the haloalkane dehalogenase of Sphingomonas paucimobilis UT26. Biologia 1995; 50: 523–528.Google Scholar
  38. 38.
    Damborsky J, Kuty M, Nemec M et al. A molecular modelling study of the catalytic mechanism of haloalkane dehalogenase: I. quantum chemical study of the first reaction step. J Chem Inf Comp Sci 1997; 37: 562–568.CrossRefGoogle Scholar
  39. 39.
    Damborsky J, Kuty M, Nemec M et al. Molecular modelling to understand the mechanisms of microbial degradation-application to hydrolytic dehalogenation with haloalkane dehalogenases. In: Chen F, Schuurmann G, eds. QSAR in Environmental Sciences-VII. Pensacola: SETAC Press, 1997.Google Scholar
  40. 40.
    Krooshof GH, Kwant EM, Damborsky J et al. Repositioning the catalytic triad acid of haloalkane dehalogenase: effects on activity and kinetics. Biochemistry 1997; 36: 9571–9580.CrossRefGoogle Scholar
  41. 41.
    Kuty M, Damborsky J, Prokop M et al. A molecular modelling study of the catalytic mechanism of haloalkane dehalogenase: 2. quantum chemical study of complete reaction mechanism. 1997; Submitted.Google Scholar
  42. 42.
    Damborsky J. Quantitative structure-function relationships of the single-point mutants of haloalkane dehalogenase: A multivariate approach. Quant Struct-Act Relat 1997; 16: 126–135.CrossRefGoogle Scholar
  43. 43.
    Damborsky J. Quantitative structure-function and structure-activity relationships of purposely modified proteins. Prot Engng 1998; In press.Google Scholar
  44. 44.
    Janssen DB, Damborsky J, Rink R et al. Engineering proteins for the degradation of recalcitrant compounds. In: Alberghina L, ed. Protein Engineering in Industrial Biotechnology. 1997: In press.Google Scholar
  45. 45.
    Geating J. Literature Study of the Biodegradability of Chemicals in Water, Vol.1 Biodegradability Prediction, Advances in and Chemical Interferences with Wastewater Treatment. EPA Report 600/2–81–175. Springfield: EPA, 1981.Google Scholar
  46. 46.
    Howard PH, Boethling RS, Stiteler W et al. Development of a predictive model for biodegradability based on BIODEG, the evaluated biodegradation data base. Sci Tot Environ 1991; 109: 635–641.CrossRefGoogle Scholar
  47. 47.
    Howard PH, Boethling RS, Stiteler WM et al. Predictive model for aerobic biodegradability developed from a file of evaluated biodegradation data. Environ Toxicol Chem 1992; 11: 593–603.CrossRefGoogle Scholar
  48. 48.
    Boethling RS, Howard PH, Meylan W et al. Group contribution method for predicting probability and rate of aerobic biodegradation. Environ Sci Technol 1994; 28: 459–465.CrossRefGoogle Scholar
  49. 49.
    Zitko V. Prediction of biodegradability of organic chemicals by an artificial neural network. Chemosphere 1991; 23: 305–312.CrossRefGoogle Scholar
  50. 50.
    Cambon B, Devillers J. New trends in structure-biodegradability relationships. Quant Struct-Act Rel 1993; 12: 49–56.CrossRefGoogle Scholar
  51. 51.
    Tabak HH, Govind R. Prediction of biodegradation kinetics using a nonlinear group contribution method. Environ Toxicol Chem 1993; 12: 251–260.CrossRefGoogle Scholar
  52. 52.
    Loonen H, Lindgren F, Hansen B et al. Prediction of biodegradability from chemical structure. In: Peijnenburg WJGM, Damborsky J, eds. Biodegradability Prediction. Dordrecht: Kluwer Academic Publishers, 1996: 105–113.CrossRefGoogle Scholar
  53. 53.
    Gamberger D, Sekusak S, Sabljic A. modelling biodegradation by an example-based learning system. Informatica 1993; 17: 157–166.Google Scholar
  54. 54.
    Klopman G, Balthasar DM, Rosenkranz HS. Application of the computer-automated structure evaluation (case) program to the study of structure-biodegradation relationships of miscellaneous chemicals. Environ Toxicol Chem 1993; 12: 23 1240.Google Scholar
  55. 55.
    Klopman G, Zhang ZT, Balthasar DM et al. Computer-automated predictions of aerobic biodegradation of chemicals. Environ Toxicol Chem 1995; 14: 395–403.CrossRefGoogle Scholar
  56. 56.
    Klopman G. The META-CASETOX system. In: Peijnenburg WJGM, Damborsky J, eds. Biodegradability Prediction. Dordrecht: Kluwer Academic Publishers, 1996: 2740.Google Scholar
  57. 57.
    Enslein K, Tomb ME, Lander TR. Structure-activity models of biological oxygen demand. In: Kaiser KLE, eds. QSAR in Environmental Toxicology. Hamilton: D. Reidel Publishing Company, 1984: 89–109.CrossRefGoogle Scholar
  58. 58.
    Niemi GJ, Veith GD, Regal RR et al. Structural features associated with degradable and persistent chemicals. Environ Toxicol Chem 1987; 6: 515–527.CrossRefGoogle Scholar
  59. 59.
    Boethling RS. Application of molecular topology to quantitative structure-biodegradability relationships. Environ Toxicol Chem 1986; 5: 797–806.CrossRefGoogle Scholar
  60. 60.
    Boethling RS, Sabijic A. Screening-level model for aerobic biodegradability based on a survey of expert knowledge. Environ Sci Technol 1989; 23: 672–679.CrossRefGoogle Scholar
  61. 61.
    Boethling RS, Gregg B, Frederick R et al. Expert systems survey on biodegradation of xenobiotic chemicals. Ecotox Environ Safety 1989; 18: 252–267.CrossRefGoogle Scholar
  62. 62.
    Cozza CL, Woods SL. Reductive dechlorination pathways for substituted benzenes: a correlation with electronic properties. Biodegradation 1992; 2: 265–278.CrossRefGoogle Scholar
  63. 63.
    Lynam M, Kuty M, Damborsky J et al. Molecular orbital calculations to describe microbial reductive dechlorination of polychlorinated dioxins. Environ Toxicol Chem 1998; In press.Google Scholar
  64. 64.
    Jackel H, Muller M. The prediction of major metabolic degradation paths of aromatic compounds. In: Peijnenburg WJGM, Karcher W, eds. Proceedings of the Workshop on Quantitative Structure Activity Relationships for Biodegradation. RIVM Report 719101021. Bilthoven: RIVM, 1995.Google Scholar
  65. 65.
    Punch B, Patton A, Wight K et al. A biodegradability evaluation and simulation system (BESS) based on knowledge of biodegradation pathways. In: Peijnenburg WJGM, Damborsky J, eds. Biodegradability Prediction. Dordrecht: Kluwer Academic Publishers, 1996: 65–73.CrossRefGoogle Scholar
  66. 66.
    Wackett LP, Ellis LBM. The University of Minnesota Biocatalysis/Biodegradation Database: A novel microbiological methos on the World Wide Web. J Microbiol Methods 1996; 25: 91–93.CrossRefGoogle Scholar
  67. 67.
    Peijnenburg WJGM, Damborsky J. Introduction, main conclusions and recommendations of the workshop “QSAR Biodegradation II”. In: Peijnenburg WJGM, Damborsky J, eds. Biodegradability Prediction. Dordrecht: Kluwer Academic Publishers, 1996: 1–5.CrossRefGoogle Scholar
  68. 68.
    Eriksson L, Hermens J. A multivariate approach to quantitative structure-activity and structure-property relationships. In: Einax J, eds. The Handbook of Environmental Chemistry. Berlin: Springer Verlag, 1995: 135–168.Google Scholar
  69. 69.
    Sjostrom M, Eriksson L. Applications of Statistical Experimental Design and PLS Modelling in QSAR. In: Van de Waterbeemd H, eds. QSAR: Chemometric Methods in Molecular Design. Weinheim, Germany: Verlag Chemie, 1995: 63–90.Google Scholar
  70. 70.
    Degner P, Muller M, Nendza M et al. Estimating Biodegradability of Chemicals by Computer Assisted Reactivity Simulation. Fraunhofer-Institute Report. Schmalenberg: Fraunhofer-Institut für Umweltchemie und Ökotoxikologie, 1991.Google Scholar
  71. 71.
    Pitter P. Correlation of microbial degradation rates with the chemical structure. Acta Hydrochimica Hydrobiologica 1985; 13: 453–460.CrossRefGoogle Scholar
  72. 72.
    Eriksson L, Jonsson J, Tysklind M. Multivariate QSBR modelling of biodehalogenation half-lives of halogenated aliphatic hydrocarbons. Environ Toxicol Chem 1995; 14: 209–217.CrossRefGoogle Scholar
  73. 73.
    Dearden JC, Nicholson RM. The prediction of biodegradability by the use of quantitative structure-activity relationships: correlation of biological oxygen demand with atomic charge difference. Pestic Sci1986; 17: 305–310.Google Scholar
  74. 74.
    Box GEP, Hunter WG, Hunter JS. Statistics for Experiments. New York: Wiley, 1978.Google Scholar
  75. 75.
    Zakarya D, Belkhadir M, Fkih-Tetouani S. Quantitative structure-biodegradability relationships (QSBRs) using modified autocorrelation method (MAM). SAR QSAR Environ Res 1993; 1: 21–27.CrossRefGoogle Scholar
  76. 76.
    Eriksson L, Johansson E, Wold S. QSAR model validation. 1997: Submitted.Google Scholar
  77. 77.
    Wold S. Validation of QSAR’s. Quant Struct-Act Relat 1991; 10: 191–193.CrossRefGoogle Scholar
  78. 78.
    Baroni M, Costantino G, Cruciani G et al. Generating optimal linear PLS estimations (GOLPE): An advanced chemometric tool for handling 3D-QSAR problems. Quant Struct-Act Relat 1993; 12: 9–20.CrossRefGoogle Scholar
  79. 79.
    Nabholz JV, Clements RG, Zeeman MG et al. Validation of structure activity relationships used by the USEPA’s Office of Pollution Prevention and toxic for the environmental hazard assessment of industrial chemicals. Environ Toxicol Risk Assess 1993; 2571–590.Google Scholar
  80. 80.
    Tysklind M, Lundgren K, Rappe C et al. Multivariate characterization and modelling of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol 1992; 26: 1023–1030.CrossRefGoogle Scholar
  81. 81.
    Tysklind M, Lundgren K, Eriksson L et al. Identifying training sets of PCDDs and PCDFs for use in chemical and biological monitoring. Chemosphere 1993; 27: 4754.Google Scholar
  82. 82.
    Wold S, Esbensen K, Geladi P. Principal Component Analysis. Chemometr Intel Lab Systems 1987; 2: 37–52.CrossRefGoogle Scholar
  83. 83.
    Koester CJ, Hites RH. Calculated physical properties of polychlorinated dibenzop-dioxins and dibenzofurans. Chemosphere 1989; 17: 2355–2362.CrossRefGoogle Scholar
  84. 84.
    Sijm DTHM, Wever H, DeVries PJ et al. Octan-i-ol/water partition coefficients of polychlorinated dibenzo-p-dioxins and dibenzofurans: experimental values determined with a stirring method. Chemosphere 1989; 19: 263–266.CrossRefGoogle Scholar
  85. 85.
    Govers HAJ, Luijk R, Evers EHG. Calculations of heat of vaporization, molar volume and solubility parameter of polychlorinated-p-dioxins. Chemosphere 1990; 20: 287–294.CrossRefGoogle Scholar
  86. 86.
    Grainger J, Reddy VV, Pattersson DJ. Analysis of tetra-through octachlorinated dibenzo-p-dioxins by gas chromatography/furier transform infrared spectroscopy. Chemosphere 1989; 19: 249–254.CrossRefGoogle Scholar
  87. 87.
    Tysklind M, Lundgren K, Rappe C et al. Multivariate quantitative structure-activity relationships for polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Toxicol Chem 1993; 12: 659–672.Google Scholar
  88. 88.
    Tysklind M, Tillitt D, Eriksson L et al. A toxic equivalency factor scale for polychlorinated dibenzofurans. Fundament Appl Toxicol 1994; 22: 277–285.CrossRefGoogle Scholar
  89. 89.
    Wilkes H, Wittich RM, Timmis KN et al. Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Appl Environ Microbiol 1996; 62: 367–371.Google Scholar
  90. 90.
    Wold S, Johansson E, Cocchi M. PLS-partial least-squares projections to latent structures. In: Kubinyi H, ed. 3D QSAR in Drug Design: Theory, Methods and Application. Leiden: ESCOM, 1993: 523–550.Google Scholar
  91. 91.
    Wold S. PLS for multivariate modelling. In: van de Waterbeemd H, ed. QSAR: Chemometric Methods in Molecular Design. Weinheim: Verlag Chemie, 1995195218.Google Scholar
  92. 92.
    Bunz PV, Cook AM. Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. Strain RW1: angular dioxygenation by a three-component enzyme system. J Bacteriol 1993; 175: 6467–6475.Google Scholar
  93. 93.
    Beurskens JE, Toussaint MM, de Wolf J et al. Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment. Environ Toxicol Chem 1995; 14: 939–943.CrossRefGoogle Scholar
  94. 94.
    Ballerstedt H, Kraus A, Lechner U. Reductive dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin and its products by anaerobic mixed cultures from saale river sediment. Environ Sci Technol 1997; 311749–1753.Google Scholar
  95. 95.
    Adriaens P, Barkovskii AL. Microbial dechlorination of historically present and freshly spiked chlorinated dioxins and the diversity of dioxin dechlorinating populations. Appl Environ Microbiol 1996; 62: 4556–4562.Google Scholar
  96. 96.
    Adriaens P, Barkovskii AL, Lynam M et al. Polychlorinated dibenzo-p-dioxins in anaerobic soils and sediments: A quest for dechlorination pattern-microbial community relationships. In: Peijnenburg WJGM, Damborsky J, eds. Biodegradability Prediction. Dordrecht: Kluwer Academic Publishers, 1996: 51–64.CrossRefGoogle Scholar
  97. 97.
    Huang CL, Harrison BK, Madura J et al. Gibbs free energies of formation of PCDDs: evaluation of estimation methods and application for predicting dehalogenation pathways. Environ Toxicol Chem 1996; 15: 824–836.CrossRefGoogle Scholar
  98. 98.
    Fukui K, 1975. Theory of Orientation and Stereoselection. New York: Springer-Verlag, 1975: pp. 34.Google Scholar
  99. 99.
    Lewis DF, Ionnides VC, Parke DV. Interaction of a series of nitriles with the alcohol-inducible isoform of P450: computer analysis of structure-activity relationships. Xenobiotica 1994; 24: 401–408.CrossRefGoogle Scholar
  100. 100.
    Zhou Z, Parr RG. Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 1990; 112: 5720–5724.CrossRefGoogle Scholar
  101. 101.
    Unsworth JF, Dorans H. Thermodynamic data for dioxins from molecular modelling computation: prediction of equilibrium isomer composition. Chemosphere 1993; 27: 351–358.CrossRefGoogle Scholar
  102. 102.
    Kolesov VP, Papina TS, Lukyanova VA. The enthalpies of formation of dibenzodioxin and its derivatives dechlorination. In: Proceedings from the 50th Calorimetry Conference, National Institute of Standards, Gaithersburg. 1995; pp. 72.Google Scholar
  103. 103.
    Nevaalainen T, Kolehmainen E. New QSAR models for polyhalogenated aromatics. Environ Toxicol Chem 1994; 111699–1706.Google Scholar
  104. 104.
    Boer FP, van Remoortere FP, North FP et al. The crystal and molecular structure of 2,3,7,8-tetrachlordibenzo-p-dioxin. Acta Cryst 1972; B28:1023–1o29.Google Scholar
  105. 105.
    Adriaens P, Chang PR, Barkovskii AL. Dechlorination of PCDD/F by organic and inorganic electron transfer molecules in reduced environments. Chemosphere 1995; 32: 433–441.CrossRefGoogle Scholar
  106. 106.
    Petrovskis EA, Vogel TM, Saffarini DA et al. Transformation of tetrachloromethane by Shewanella putrifaciens MR-1. In: Hinchee RE, Anderson DB, Hoepppel RE, eds. Bioremediation of Chlorinated Solvents. Columbus: Batelle Press, 1995: 61–67.Google Scholar
  107. 107.
    Qin Z. A study of UV-degradation dynamics of 2,3,7,8-tetrachlorodibenzo-p-dioxin and its analogues. Chemosphere 1996; 33: 91–97.CrossRefGoogle Scholar
  108. 108.
    Andrieux CP, Saveant JM, Su KB. Kinetics of dissociative electron transfer. Direct and mediated electrochemical reductive cleavage of the carbon-halogen bond. J Phys Chem 1986; 90: 3815–33823.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jirí Damborsky
  • Mary Lynam
  • Michal Kuty

There are no affiliations available

Personalised recommendations