Molecular Genetics of the Degradation of Dioxins by Bacteria

  • Jean Armengaud
  • Kenneth N. Timmis
Part of the Environmental Intelligence Unit book series (EIU)


The astonishingly rapid development of molecular biology and biochemistry during the last two decades led to the discovery and the detailed description of many molecular mechanisms employed by organisms to grow, multiply and survive under optimal conditions, and continues to reveal the enormous complexity of biological processes. The large genome sequencing projects involving many laboratories worldwide constitute a new dimension in studies on cellular metabolism, multicellular interactions and developmental biology. The rapidly expanding poly-nucleotide and polypeptide sequence databases provide important opportunities to rapidly obtain insights into possible functions of new genes and genetic loci, and into functional domains of catalytic, regulatory and structural proteins. Such approaches that have recently been applied to the genetics and biochemistry of the bacterial catabolism of dibenzo-p-dioxins and dibenzofurans are reviewed here.


Pseudomonas Putida Degradative Pathway Naphthalene Dioxygenase Comamonas Testosteroni Pseudomonas Pseudoalcaligenes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van den Berg M, De Jongh J, Poiger H et al. The toxicokinetics and metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and their relevance for toxicity. Crit Rev Toxicol 1994; 24: 1 - 74.CrossRefGoogle Scholar
  2. 2.
    Mohn WW, Tiedje JM. Microbial reductive dehalogenation. Microbiol Rev 1992; 56: 285 - 289.Google Scholar
  3. 3.
    Adrians P, Fu Q, Grbic-Galic D. Bioavailability and transformation of highly chlorinated dibenzo-p-dioxins and dibenzofurans in anaerobic soils and sediments. Environ Sci Technol 1995; 29: 2252 - 2260.Google Scholar
  4. 4.
    Beurskens JEM, Toussaint M, De Wolf J et al. Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment. Environ Toxicol Chem 1995; 14: 939 - 943.CrossRefGoogle Scholar
  5. 5.
    Blasco R, Wittich R-M, Mallavarapu M et al. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 1995; 270: 29229 - 29235.CrossRefGoogle Scholar
  6. 6.
    Blasco R, Mallavarapu M, Wittich R-M et al. Evidence that formation of protoanemonin from metabolites of 4-chlorobiphenyl degradation negatively affects the survival of 4-chlorobiphenyl-cometabolizing microorganisms. Appl Environ Microbiol 1997; 63: 427 - 434.Google Scholar
  7. 7.
    Wittich R-M, Wilkes H, Sinnwell V et al. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol 1992; 58: 1005 - 1010.Google Scholar
  8. 8.
    Arfmann H-A, Timmis KN, Wittich R-M. Mineralization of 4-chlorodibenzofuran by a consortium consisting of Sphingomonas sp. strain RW1 and Burkholderia sp. strain JWS. Appl Environ Microbiol 1997; 63: 3458 - 3462.Google Scholar
  9. 9.
    Armengaud J, Timmis KN. Molecular characterization of Fdxi, a putidaredoxintype [2Fe-2S] ferredoxin able to transfer electrons to the dioxin dioxygenase of Sphingomonas sp. RW1. Eur J Biochem 1997; 247: 833 - 842.CrossRefGoogle Scholar
  10. 10.
    Armengaud J, Timmis KN. Biodegradation of dibenzo-p-dioxin and dibenzofuran by bacteria. Kor J Microbiol 1997; 35, in press.Google Scholar
  11. ii. Bünz PV, Cook AM. Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: angular dioxygenation by a three-component enzyme system. J Bacteriol 1993; 1756467-6475.Google Scholar
  12. 12.
    Bünz PV, Falchetto R, Cook AM. Purification of two isofunctional hydrolases (EC in the degradative pathway for dibenzofuran in Sphingomonas sp. strain RW1. Biodegradation 1993; 4: 1171 - 1178.Google Scholar
  13. 13.
    Happe B, Eltis LD, Poth H et al. Characterization of 2,2’,3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran-and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1. J Bacteriol 1993; 175: 73137320.Google Scholar
  14. 14.
    Megharaj M, Wittich R-M, Blasco R et al. Superior survival and degradation of dibenzo-p-dioxin and dibenzofuran in soil by soil-adapted Sphingomonas sp. strain RW1. Appl Microbiol Biotechnol 1997; 48: 109 - 114.Google Scholar
  15. 15.
    Wilkes H, Wittich R-M, Timmis KN et al. Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Appl Environ Microbiol 1996; 62: 367 - 371.Google Scholar
  16. 16.
    White DC, Sutton SD, Ringelberg DB. The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 1996; 7: 301 - 306.CrossRefGoogle Scholar
  17. 17.
    Dagher F, Déziel E, Lirette P et al. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can J Microbiol 1997; 43: 368 - 377.CrossRefGoogle Scholar
  18. 18.
    Stillwell LC, Thurston SJ, Schneider RP et al. Physical mapping and characterization of a catabolic plasmid from the deep-subsurface bacterium Sphingomonas sp. strain F199. J Bacteriol 1995; 176: 4537 - 4539.Google Scholar
  19. 19.
    Feng X, Ou LT, Ogram A. Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. strain CFo6. Appl Environ Microbiol 1997; 631332-1337.Google Scholar
  20. 20.
    Ederer MM, Crawford RL, Herwig RP et al. PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol Ecol 1997; 6: 39 - 49.CrossRefGoogle Scholar
  21. 21.
    Eaton SL, Resnick SM, Gibson DT. Initial reactions in the oxidation of 1,2dihydronaphthalene by Sphingomonas yanoikuyae strains. Appl Environ Microbiol 1996; 62: 4388 - 4394.Google Scholar
  22. 22.
    Schmidt S, Wittich R-M, Erdmann D et al. Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl Environ Microbiol 1992; 58: 2744 - 2750.Google Scholar
  23. 23.
    Heiss G, Muller C, Altenbuchner J et al. Analysis of a new dimeric extradiol dioxygenase from a naphthalene-sulfonate degrading Sphingomonad. Microbiology 1997; 1431691-1699.Google Scholar
  24. 24.
    Zipper C, Nickel K, Angst W et al. Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov. Appl Environ Microbiol 1996; 62: 4318 - 4322.Google Scholar
  25. 25.
    Franklin FC, Bagdasarian M, Bagdasarian MM et al. Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proc Nail Acad Sci U S A 1981; 78: 7458 - 7462.CrossRefGoogle Scholar
  26. 26.
    Harayama S, Leppik R A, Rekik M et al. Gene order of the TOL catabolic plasmid upper pathway operon and oxidation of both toluene and benzyl alcohol by the xylA product. J Bacteriol 1986; 167: 455 - 461.Google Scholar
  27. 27.
    Ramos J-L, Marques S, Timmis KN. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu Rev Microbiol 1997; 51: 341 - 373.CrossRefGoogle Scholar
  28. 28.
    Mermod N, Ramos JL, Bairoch A et al. The xylS gene positive regulator of TOL plasmid pWWO: identification, sequence analysis and overproduction leading to constitutive expression of meta cleavage operon. Mol Gen Genet 1987; 207; 349 - 354.CrossRefGoogle Scholar
  29. 29.
    Furukawa K, Tomizuka N, Kamibayashi A. Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl Environ Microbiol 1979; 38: 301 - 310.Google Scholar
  30. 30.
    Taira K, Hayase N, Arimura N et al. Cloning and nucleotide sequence of the 2,3dihydroxybiphenyl dioxygenase gene from the PCB-degrading strain of Pseudomonas paucimobilis Q1. Biochemistry 1988; 27: 3990 - 3996.CrossRefGoogle Scholar
  31. 31.
    Sato S-I, Ouchiyama N, Kimura T et al. Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CAio: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J Bacteriol 1997; 179: 4841 - 4849.Google Scholar
  32. 32.
    Asturias JA, Timmis KN. Three different 2,3-dihydroxybiphenyl 1,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J Bacteriol 1993 175: 4631 - 4640.Google Scholar
  33. 33.
    Han S, Eltis LD, Timmis KN et al. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading Pseudomonad. Science 1995; 270: 976 - 980.CrossRefGoogle Scholar
  34. 34.
    Senda T, Sugiyama K, Narita H et al. Three-dimensional structures of free from and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKSIO2. J Mol Biol 1996; 255: 735 - 752.CrossRefGoogle Scholar
  35. 35.
    Bugg TD, Sanvoisin J, Spence EL. Exploring the catalytic mechanism of the extradiol catechol dioxygenases. Biochem Soc Trans 1997; 25: 81 - 85.Google Scholar
  36. 36.
    Eltis LD, Bolin JT. Evolutionary relationships among extradiol dioxygenases. J Bacteriol 1996; 178: 5930 - 5937.Google Scholar
  37. 37.
    Block DW, Lingens F. Microbial metabolism of quinoline and related compounds. XIV. Purification and properties of 1H-3-hydroxy-4-oxoquinoline oxygenase, a new extradiol cleavage enzyme from Pseudomonas putida strain 33/1. Biol Chem Hoppe Seyler 1992; 373: 343 - 349.CrossRefGoogle Scholar
  38. 38.
    Bauer I, Max N, Fetzner S et al. 2,4-dioxygenases catalyzing N-heterocyclic-ring deavage and formation of carbon monoxide. Purification and some properties of IH-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter sp. Ru6ia and comparison with 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase from Pseudomonas putida 33/1. Eur J Biochem 1996; 240: 576 - 583.Google Scholar
  39. 39.
    Nakai C, Hod K, Kagamiyama H et al. Purification, subunit structure, and partial amino acid sequence of metapyrocatechase. J Biol Chem 1983; 258: 2916 - 2922.Google Scholar
  40. 40.
    Wallis MG, Chapman SK. Isolation and partial characterization of an extradiol non-heme iron dioxygenase which preferentially cleaves 3-methylcatechol. Biochem J 1990; 266: 605 - 609.Google Scholar
  41. 41.
    Eltis LD, Hofmann B, Hecht HJ et al. Purification and crystallization of 2,3dihydroxybiphenyl 1,2-dioxygenase. J Biol Chem 1993; 268: 2727 - 2732.Google Scholar
  42. 42.
    Furukawa K, Arimura N. Purification and properties of 2,3-dihydroxybiphenyl dioxygenase from polychlorinated biphenyl-degrading Pseudomonas pseudoalcaligenes and Pseudomonas aeruginosa carrying the cloned bphC gene. J Bacteriol 1987; 169: 924 - 927.Google Scholar
  43. 43.
    Bertini I, Capozzi F, Dikiy A et al. Evidence of histidine coordination to the catalytic ferrous ion in the ring-cleaving 2,2’,3-trihydroxybiphenyl dioxygenase from the dibenzofuran-degrading bacterium Sphingomonas sp. strain RW1. Biochem Biophys Res Commun 1995; 215: 855 - 860.CrossRefGoogle Scholar
  44. 44.
    Kosono S, Maeda M, Fuji F et al. Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl Environ Microbiol 1997; 63: 3282 - 3285.Google Scholar
  45. 45.
    Kudo T, Maeda M, Fuji F. Diversity of bph gene cluster of PCB-degrading Rhodococci. In: Timmis KN, Lalucat J, eds. “Biodegradation of organic pollutants” abstract book, UIB-GBF-CSIC-TUB symposium, Mallorca 1996: 47.Google Scholar
  46. 46.
    Schmid A, Rothe B, Altenbuchner J et al. Characterization of three distinct extradiol dioxygenases involved in mineralization of dibenzofuran by Terrabacter sp. strain DPO36o. J Bacteriol 1997; 179: 53 - 62.Google Scholar
  47. 47.
    Gibson DT, Koch JR, Kallio RE. Oxidative degradation of aromatic hydrocarbons by microorganisms. I: Enzymatic formation of catechol from benzene. Biochemistry 1968; 7: 2653 - 2662.CrossRefGoogle Scholar
  48. 48.
    Butler CS, Mason JR. Structure-function analysis of the bacterial aromatic ringhydroxylating dioxygenases. Adv Microb Physiol 1997; 38:47-84.Google Scholar
  49. 49.
    Batie CJ, Ballou DP, Correll CC. Phthalate dioxygenase reductase and related flavin-iron-sulfur containing electron transferases. In: Müller F, ed. Chemistry and Biochemistry of Flavoenzymes. vol 3; CRC Press. Boca Raton, FL, 1992: 543 - 566.Google Scholar
  50. 50.
    Zamanian M, Mason JR. Benzene dioxygenase in Pseudomonas putida. Subunit composition and immuno-cross-reactivity with other aromatic dioxygenases. Biochem J 1987; 244: 611 - 616.Google Scholar
  51. 51.
    Ensley BD, Gibson DT. Naphthalene dioxygenase: purification and properties of a terminal oxygenase component. J Bacteriol 1983; 155: 505 - 511.Google Scholar
  52. 52.
    Suen WC, Gibson DT. Isolation and preliminary characterization of the subunits of the terminal component of naphthalene dioxygenase from Pseudomonas putida NCIB 9816-4. J Bacteriol 1983; 175: 5877 - 5881.Google Scholar
  53. 53.
    Yamaguchi M, Fujisawa H. Purification and characterization of an oxygenase component in benzoate 1,2-dioxygenase system from Pseudomonas arvilla C-1. J Biol Chem 1980; 255: 5058 - 5063.Google Scholar
  54. 54.
    Locher HH, Leisinger T, Cook AM. 4-Sulphobenzoate 3,4-dioxygenase. Purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2. Biochem J 1991; 274: 833 - 842.Google Scholar
  55. 55.
    Schweizer D, Markus A, Seez M et al. Purification and some properties of component B of the 4-chlorophenylacetate 3,4-dioxygenase from Pseudomonas species strain CBS 3. J Biol Chem 1987; 262: 9340 - 9346.Google Scholar
  56. 56.
    Batie CJ, LaHaie E, Ballou DP. Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. J Biol Chem 1987; 262: 1510 - 1518.Google Scholar
  57. 57.
    Rosche B, Tshisuaka B, Fetzner S et al. 2-Oxo-1,2-dihydroquinoline 8-monooxygenase, a two-component enzyme system from Pseudomonas putida 86. J Biol Chem 1995; 270: 17836 - 17842.CrossRefGoogle Scholar
  58. 58.
    Subramanian V, Liu T-N, Yeh W-K et al. Purification and properties of FerredoxinToL, a component of toluene dioxygenase from Pseudomonas putida F1. J Biol Chem 1985; 260: 2355 - 2363.Google Scholar
  59. 59.
    Hurtubise Y, Barriault D, Powlowski J et al. Purification and characterization of the Comamonas testosteroni B-356 biphenyl dioxygenase components. J Bacteriol 1995; 177: 6610 - 6618.Google Scholar
  60. 60.
    Meyer J. The evolution of ferredoxins. Trends Ecol and Evol 1988; 3: 222 - 226.CrossRefGoogle Scholar
  61. 61.
    Cammack R. Iron-sulfur clusters in enzymes: theme and variations. Adv in Inorg Chem 1992; 38: 281 - 322.CrossRefGoogle Scholar
  62. 62.
    Grabau C, Schatt E, Jouanneau Y et al. A new [2Fe-2S] ferredoxin from Rhodobacter capsulatus. Coexpression with a 2[4Fe-4S] ferredoxin in Escherichia coli. J Biol Chem 1991; 266: 3294 - 3299.Google Scholar
  63. 63.
    Armengaud J, Meyer C, Jouanneau Y. Recombinant expression of the fdxD gene of Rhodobacter capsulatus and characterization of its product, a [2Fe-2S] ferredoxin. Biochem J 1994; 300: 413 - 418.Google Scholar
  64. 64.
    Harayama S, Polissi A, Rekik M. Divergent evolution of chloroplast-type ferredoxins. FEBS Lett 1991; 285: 85 - 88.CrossRefGoogle Scholar
  65. 65a.
    Harayama S, Rekik B, Bairoch A et al. Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWWO plasmid xy1XYZ genes, encoding benzoate dioxygenases. J Bacteriol 1991; 173: 7540 - 7548.Google Scholar
  66. 65b.
    Peterson JA, Lorence MC, Amarneh B. Putidaredoxin reductase and putidaredoxin. Cloning, sequence determination and heterologous expression of the proteins. J Biol Chem 1990; 265: 6066 - 6073.Google Scholar
  67. 66.
    Naud I, Vinçon M, Garin J et al. Purification of a sixth ferredoxin from Rhodobacter capsulatus: primary structure and biochemical properties. Eur J Biochem 1994; 222, 933 - 939.CrossRefGoogle Scholar
  68. 67.
    Armengaud J, Meyer C, Jouanneau Y. A [2Fe-2S] ferredoxin (FdVI) is essential for growth of the photosynthetic bacterium Rhodobacter capsulatus. J Bacteriol 1997; 179, 3304 - 3309.Google Scholar
  69. 68.
    Kimura T, Suzuki K. Components of the electron transport system in adrenal steroid hydroxylase. Isolation and properties of non-heme iron protein (adrenodoxin). J Biol Chem 1967; 242: 485 - 491.Google Scholar
  70. 69.
    Link TA, Hatzfeld OM, Unalkat P et al. Comparison of the “Rieske” [2Fe-2S] center in the bci complex and in bacterial dioxygenases by circular dichroism spectroscopy and cyclic voltammetry. Biochemistry 1996; 35: 7546 - 7552.CrossRefGoogle Scholar
  71. 70.
    Meyer J, Bruschi MH, Bonicel JJ et al Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum. Biochemistry 1986; 25: 6054 - 6061.CrossRefGoogle Scholar
  72. 71.
    Golinelli MP, Akin LA, Crouse BR et al. Cysteine ligand swapping on a deletable loop of the [2Fe-2S] ferredoxin from Clostridium pasteurianum. Biochemistry 1996; 35: 8995 - 9002.CrossRefGoogle Scholar
  73. 72.
    Munck E, Debrunner PG, Tsibris JC et al. Mossbauer parameters of putidaredoxin and its selenium analog. Biochemistry 1972; 11:855-863.Google Scholar
  74. 73.
    Geary PJ, Dickson DP. Mössbauer spectroscopic studies of the terminal dioxygenase protein of benzene dioxygenase from Pseudomonas putida. Biochem J 1981; 195: 199 - 203.Google Scholar
  75. 74.
    Fee JA, Findling KL, Yoshida T et al. Purification and characterization of the Rieske iron-sulfur protein from Thermus thermophilus. Evidence for a [2Fe-25] cluster having non-cysteine ligands. J Biol Chem 1984; 259124-133.Google Scholar
  76. 75.
    Bertrand P, Gayda JP, Fee JA et al. Comparison of the spin-lattice relaxation properties of the two classes of [2Fe-2S] clusters in proteins. Biochim Biophys Acta 1987; 916: 24 - 28.Google Scholar
  77. 76.
    Wang SP, Chen YP, Ely B. A ferredoxin, designed FdxP, stimulates p-hydroxybenzoate hydroxylase activity in Caulobacter crescentus. J Bacteriol 1995; 177: 2908 - 2911.Google Scholar
  78. 77.
    Peterson JA, Lu JY, Geisselsoder J et al. Cytochrome P-45oterp. Isolation and purification of the protein and cloning and sequencing of its operon. J Biol Chem 1992; 267x4193-14203.Google Scholar
  79. 78.
    Nagy I, Schoofs G, Compernolle F et al. Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp.Google Scholar
  80. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 1995; 177:676-687.Google Scholar
  81. 79.
    Haigler BE, Gibson DT. Purification and properties of ferredoxinNAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Bacteriol 1990; 172: 465 - 468.Google Scholar
  82. 80.
    Schläfli HR, Baker DP, Leisinger T et al. Stereospecificty of hydride removal from NADH by reductases of multicomponent nonheme iron oxygenase systems. J Bacteriol 1995; 177i83i-834.Google Scholar
  83. 81.
    Correll CC, Batie CJ, Ballou DP et al. Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science 1992; 258: 1604 - 1610.CrossRefGoogle Scholar
  84. 82.
    Shergill JK, Joannou CL, Mason JR et al. Coordination of the Rieske-type [2Fe2S] cluster of the terminal iron-sulfur protein of Pseudomonas putida benzene 1,2-dioxygenase, studied by one-and two-dimensional electron spin-echo envelope modulation spectroscopy. Biochemistry 1995; 34ii6533-i6542.Google Scholar
  85. 83.
    Jiang H, Parales RE, Lynch NA et al. Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear nonheme iron coordination sites. J Bacteriol 1996; 178: 3133 - 3139.Google Scholar
  86. 84.
    Mason JR, Butler CS, Cammack R et al. Structural studies on the catalytic component of benzene dioxygenase from Pseudomonas putida. Biochem Soc Trans 1997; 25: 90 - 95.Google Scholar
  87. 85.
    Tan HM, Cheong CM. Substitution of the ISP alpha subunit of biphenyl dioxygenase from Pseudomonas results in a modification of the enzyme activity. Biochem Biophys Res Commun 1994; 204912-917.Google Scholar
  88. 86.
    Hirose J, Suyama A, Hayashida S et al. Construction of hybrid biphenyl (bph) and toluene (tod) genes for functional analysis of aromatic ring dioxygenases. Gene 1994; 138: 27 - 33.CrossRefGoogle Scholar
  89. 87.
    Kimura N, Nishi A, Goto M et al. Functional analyses of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally. J Bacteriol 1997; 179: 936 - 3943.Google Scholar
  90. 88.
    Erickson BD, Mondello FJ. Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol 1993; 59: 3858 - 3862.Google Scholar
  91. 89.
    Mondello FJ, Turcich MP, Lobos JH et al. Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl Environ Microbiol 1997; 63: 3096 - 3103.Google Scholar
  92. 90.
    Twilfer H, Bernhardt FH, Gersonde K. Dioxygen-activating iron center in putidamonooxin. Electron spin resonance investigation of the nitrosylated putidamonooxin. Eur J Biochem 1985; 147: 171 - 176.CrossRefGoogle Scholar
  93. 91.
    Bruschi M, Guerlesquin F. Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev 1988; 54: 155 - 176.CrossRefGoogle Scholar
  94. 92.
    Sauber K, Fröhner C, Rosenberg G et al. Purification and properties of pyrazon dioxygenase from pyrazon-degrading bacteria. Eur J Biochem 1977; 74i89-97.Google Scholar
  95. 93.
    Sato S-I, Nam J-W, Kasuga K et al. Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CAio. J Bacteriol 1997; 179: 4850 - 4858.Google Scholar
  96. 94.
    Beil S, Happe B, Timmis KN et al. Genetic and biochemical characterization of the broad spectrum chlorobenzene dioxygenase from Burkholderia sp. strain PS12: dechlorination of 1,2,4,5-tetrachlorobenzene. Eur J Biochem 1997; 247: 190 - 199.CrossRefGoogle Scholar
  97. 95.
    Werlen C, Kohler HP, Van der Meer JR. The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J Biol Chem 1996; 271: 4009 - 4016.CrossRefGoogle Scholar
  98. 96.
    Vuilleumier S. Bacterial glutathione S-transferases: what are they good for ? J Bacteriol 1997; 179: 1431 - 1441.Google Scholar
  99. 97.
    Hofer B, Backhaus S, Timmis KN. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene 1994; 144: 9 - 16.CrossRefGoogle Scholar
  100. 98.
    Roper DI, Cooper RA. Purification, nucleotide sequence and some properties of a bifunctional isomerase/decarboxylase from the homoprotocatechuate degradative pathway of Escherichia coli C. Eur J Biochem 1993; 217575-580.Google Scholar
  101. 99.
    Prieto MA, Diaz E, Garcia JL. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. J Bacteriol 1996; 178: 111 - 12o.Google Scholar
  102. 100.
    Wilson R, Ainscough R, Anderson K et al. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 1994; 368: 32 - 38.CrossRefGoogle Scholar
  103. 101.
    Kabisch M, Fortnagel P. Nucleotide sequence of the metapyrocatechase II (catechol 2,3-oxygenase II) gene mpcll from Alcaligenes eutrophus JMP 222. Nucleic Acids Res 1990; 18: 5543.CrossRefGoogle Scholar
  104. 102.
    Koga H, Yamaguchi E, Matsunaga K et al. Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-45ocam hydroxylase of Pseudomonas putida. J Biochem 1989; 106: 831 - 836.Google Scholar
  105. 103.
    Van den Meer JR. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie van Leeuwenhoek 1997; 71159 - 178.Google Scholar
  106. 104.
    Taira K, Hirose J, Hayashida S et al. Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem 1992; 267: 4844 - 4853.Google Scholar
  107. 105.
    Erickson BD, Mondello FJ. Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinatedbiphenyl-degrading enzyme in Pseudomonas strain LB400. J Bacteriol 1992; 174: 2903 - 2912.Google Scholar
  108. 106.
    Hofer B, Eltis D, Dowling DN et al. Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 1993; 130: 47 - 55.CrossRefGoogle Scholar
  109. 107.
    Kikuchi Y, Nagata Y, Hinata M et al. Identification of the bphA4 gene encoding ferredoxin reductase involved in biphenyl and polychlorinated biphenyl degradation in Pseudomonas sp. strain KKS102. J Bacteriol 1994; 176: 1689 - 1694.Google Scholar
  110. 108.
    Sylvestre M, Sirois M, Hurtubise Y et al. Sequencing of Comamonas testosteroni strain B-356-biphenyl/chlorobiphenyl dioxygenase genes: evolutionary relationships among Gram-negative bacterial biphenyl dioxygenases. Gene 1996; 174: 195 - 202.CrossRefGoogle Scholar
  111. 109.
    Furukawa K, Hirose J, Suyama A et al. Gene components responsible for descrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J Bacteriol 1993; 175: 5224 - 5232.Google Scholar
  112. 110.
    Engesser KH, Strubel V, Christoglou K et al. Dioxygenolytic cleavage of aryl ether bonds: 1,20-dihydro-1,10-dihydroxyfluoren-9-one, a novel arene dihydrodiol as evidence for angular dioxygenation of dibenzofuran. FEMS Microbiol Lett 1989; 53: 205 - 209.CrossRefGoogle Scholar
  113. 111.
    Strubel V, Rast HG, Fietz W et al. Enrichment of dibenzofuran utilizing bacteria with high co-metabolic potential towards dibenzodioxin and other anellated aromatics. FEMS Microbiol Lett 1989; 58: 233 - 238.CrossRefGoogle Scholar
  114. 112.
    Strubel V, Engesser K-H, Fischer P et al. 3-(2-Hydroxyphenyl)catechol as substrate for proximal meta ring cleavage in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361. J Bacteriol 1991; 1731932-1937.Google Scholar
  115. 113.
    Fortnagel P, Harms H, Wittich R-M et al. Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl Environ Microbiol 1990; 56: 1148 - 1156.Google Scholar
  116. 114.
    Schmidt S, Wittich R-M, Fortnagel P et al. Metabolism of 3-methyldiphenyl ether by Sphingomonas sp. SS31. FEMS Microbiol Lett 1992; 75: 253 - 258.CrossRefGoogle Scholar
  117. 115.
    Schmidt S, Fortnagel P, Wittich R-M. Biodegradation and transformation of 4,4’-and 2,4-dihalodiphenyl ethers by Sphingomonas sp. strain SS33. Appl Environ Microbiol 1993; 59: 3931 - 3933.Google Scholar
  118. 116.
    Engesser KH, Fietz W, Fischer P et al. Dioxygenolytic cleavage of aryl ether bonds: 1,2-dihydro-1,2-dihydroxy-4-carboxybenzophenone as evidence for initial 1,2dioxygenation in 3- and 4-carboxy biphenyl ether degradation. FEMS Microbiol Lett 1990; 57: 317 - 321.CrossRefGoogle Scholar
  119. 117.
    Dehmel U, Engesser KH, Timmis KN et al. Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ethers in Pseudomonas pseudoalcaligenes POB31o. Arch Microbiol 1995; 163: 35 - 41.CrossRefGoogle Scholar
  120. 118.
    Gieg LM, Otter A, Fedorak PM. Carbazole degradation by Pseudomonas sp. LD2: metabolic characteristics and the identification of some metabolites. Environ Sci Technol 1996; 30: 575 - 585.CrossRefGoogle Scholar
  121. 119.
    Hisatsuka K, Sato M. Microbial transformation of carbazole to anthranilic acid by Pseudomonas stutzeri. Biosci Biotechnol Biochem 1994; 58: 213 - 214.CrossRefGoogle Scholar
  122. 120.
    Ouchiyama N, Zhang Y, Omori T et al. Biodegradation of carbazole by Pseudomonas spp. CAo6 and Caio. Biosci Biotechnol Biochem 1993; 57: 455 - 460.CrossRefGoogle Scholar
  123. 121.
    Noda Y, Nishikawa S, Shiozuka K et al. Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J Bacteriol 1990; 172: 2704 2709.Google Scholar
  124. 122.
    Yrjala K, Paulin L, Kilpi S et al. Cloning of cmpE, a plasmid-borne catechol 2,3dioxygenase-encoding gene from the aromatic-and chloroaromatic-degrading Pseudomonas sp. HV3. Gene 1994; 28: 119 - 121.Google Scholar
  125. 123.
    Furukawa K, Arimura N, Miyazaki T. Nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene of Pseudomonas pseudoalcaligenes. J Bacteriol 1987; 169: 427 - 429.Google Scholar
  126. 124.
    Harayama S, Rekik M. Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J Biol Chem 1989; 264: 15328 - 15333.Google Scholar
  127. 125.
    Zylstra GJ, Gibson DT. Toluene degradation by Pseudomonas putida Fl. Nucleotide sequence of the TodC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 1989; 26414940-14946.Google Scholar
  128. 126.
    Bartilson M, Shingler V. Nucleotide sequence and expression of the catechol 2,3dioxygenase-encoding gene of phenol-catabolizing Pseudomonas CF600. Gene 1989; 85: 233 - 238.CrossRefGoogle Scholar
  129. 127.
    Nakai C, Kagamiyama H, Nozaki M et al. Complete nucleotide sequence of the metapyrocatechase gene on the TOL plasmid of Pseudomonas putida mt-2. J Biol Chem 1983; 258: 2923 - 2928.Google Scholar
  130. 128.
    Zukowski MM, Gaffney DF, Speck D et al. Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci U S A 1983; 80: 1101 - 1105.CrossRefGoogle Scholar
  131. 129.
    Dong FM, Wang LL, Wang CM et al. Molecular cloning and mapping of phenol degradation genes from Bacillus stearothermophilus FDTP-3 and their expression in Escherichia coli. Appl Environ Microbiol 1992; 582531-2535.Google Scholar
  132. 130.
    Asturias JA, Eltis LD, Prucha M et al. Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6. Identification of a new family of extradiol dioxygenases. J Biol Chem 1994; 269: 7807 - 7815.Google Scholar
  133. 131.
    Kukor JJ, Olsen RH. Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl Environ Microbiol 1996; 62: 1728 - 1740.Google Scholar
  134. 132.
    Heiss G, Stolz A, Kuhm AE et al. Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalene-sulfonate degrading bacterium strain BN6. J Bacteriol 1995; 177: 5865 - 5871.Google Scholar
  135. 133.
    Neidle EL, Hartnett C, Ornston LN et al. Cis-diol dehydrogenases encoded by the TOL pWWo plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. Eur J Biochem 1992; 204: 113 - 120.CrossRefGoogle Scholar
  136. 134.
    Denome SA, Stanley DC, Olson ES et al. Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol 1993; 175: 6890 - 6901.Google Scholar
  137. 135.
    Takizawa N, Kaida N, Torigoe S et al. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol 1994; 176: 2444 - 2449.Google Scholar
  138. 136.
    Kaneko T, Sato S, Kotani H et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC68o3. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 1996; 3: 109 - 136.CrossRefGoogle Scholar
  139. 137.
    Neidle EL, Hartnett C, Ornston LN et al. Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J Bacteriol 1991; 173: 5385 - 5395.Google Scholar
  140. 138.
    Irie S, Doi S, Yorifuji T et al. Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida. J Bacteriol 1987; 169: 5174 - 5179.Google Scholar
  141. 139.
    Brunel F, Davison J. Cloning and sequencing of Pseudomonas genes encoding vanillate demethylase. J Bacteriol1988; 170: 4924 - 4930.Google Scholar
  142. 140.
    Kesseler M, Dabbs ER, Averhoff B et al. Studies on the isopropylbenzene 23dioxygenase and the 3-iso-propylcatechol 2,3-dioxygenase genes encoded by the linear plasmid of Rhodococcus erythropolis BD2. Microbiology 1996; 142: 3241 - 3251.CrossRefGoogle Scholar
  143. 141.
    Parales JV, Kumar A, Parales RE et al. Cloning and sequencing of the genes encoding 2-nitrotoluene dioxygenase from Pseudomonas sp. JS42. Gene 1996; 181: 57 - 61.CrossRefGoogle Scholar
  144. 142.
    Pflugmacher U, Averhoff B, Gottschalk G. Cloning, sequencing, and expression of isopropylbenzene degradation genes from Pseudomonas sp. strain JR1: identification of isopropylbenzene dioxygenase that mediates trichloroethene oxidation. Appl Environ Microbiol 1996; 62:3967-3977.Google Scholar
  145. 143.
    Tan HM, Tang HY, Joannou CL et al. The Pseudomonas putida ML2 plasmidencoded genes for benzene dioxygenase are unusual in codon usage and low in G+C content. Gene 1993; 130: 33 - 39.CrossRefGoogle Scholar
  146. 144.
    Suen WC, Haigler BE, Spain JC. 2,4-Dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: similarity to naphthalene dioxygenase. J Bacteriol 1996; 178: 49264934.Google Scholar
  147. 145.
    Aoki H, Kimura T, Habe H et al. Cloning, nucleotide sequence, and characterization of the genes encoding enzymes involved in the degradation of cumene to 2hydroxy-6-oxo-7-methylocta-2,4-dienoic acid in Pseudomonas fluorescens IPo1. J Ferment Bioeng 1996; 81: 187 - 196.CrossRefGoogle Scholar
  148. 146.
    Eaton RW. p-Cumate catabolic pathway in Pseudomonas putida Fl: cloning and characterization of DNA carrying the cmt operon. J Bacteriol 1996; 178:1351-1362.Google Scholar
  149. 147.
    Simon MJ, Osslund TD, Saunders R et al. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 1993; 127: 31 - 37.Google Scholar
  150. 148.
    Kimbara K, Hashimoto T, Fukuda M et al. Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacterium Pseudomonas sp. strain KKS102. J Bacteriol 1989; 171: 2740 - 2747.Google Scholar
  151. 149.
    Asturias JA, Diaz E, Timmis KN. Evolutionary relationship of the biphenyl dioxygenase of the gram-positve bacterium Rhodococcus globerulus P6 to multi-component dioxygenases of gram-negative bacteria. Gene 1995; 156: 11 - 18.CrossRefGoogle Scholar
  152. 150.
    Omitted in proof.Google Scholar
  153. 151.
    Danganan CE, Ye RW, Daubaras DL et al. Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia ACtioo. Appl Environ Microbiol 1994; 60: 4100 - 4106.Google Scholar
  154. 152.
    Nakatsu CH, Straus NA, Wyndham RC. The nucleotide sequence of the Tn5271 3chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 1995; 141: 485 - 495.CrossRefGoogle Scholar
  155. 153.
    Junker F, Kiewitz R, Cook AM. Characterization of the p-toluenesulfonate operon tsaMBCD and tsaR in Comamonas testosteroni T-2. J Bacteriol 1997; 179: 919 - 927.Google Scholar
  156. 154.
    Haak B, Fetzner S, Lingens F. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS. J Bacteriol 1995; 177: 667 - 675.Google Scholar
  157. 155.
    Priefert H, Rabenhorst J, Steinbuchel A. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol 1997; 179: 2595 - 2607.Google Scholar
  158. 156a.
    Fukuda M, Yasukouchi Y, Kikuchi Y et al. Identification of the bphA and bphB genes of Pseudomonas sp. strain KKS1o2 involved in degradation of biphenyl and polychlorinated biphenyls. Biochem Biophys Res Commun 1994; 202: 850 - 856.CrossRefGoogle Scholar
  159. b.Masai E, Yamada A, Healy JM et al. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol 1995; 61:2079-2085.Google Scholar
  160. 156c.
    Ta DT, Vickery LE. Cloning, sequencing and overexpression of a [2Fe-25] ferredoxin gene from Escherichia coli. J Biol Chem 1992; 267: 11120 - 11125.Google Scholar
  161. 157.
    Eaton RW. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 1997; 179:3171-3180.Google Scholar
  162. 158.
    Harms H, Wittich R-M, Sinnwell V et al. Transformation of dibenzo-p-dioxin by Pseudomonas sp. strain HH69. Appl Environ Microbiol 1990; 56: 1157 - 1159.Google Scholar
  163. 159.
    Klecka GM, Gibson DT. Metabolism of dibenzo-[1,4]-dioxan by a Pseudomonas species. Biochem J 1979; 180: 639 - 645.Google Scholar
  164. 160.
    Klecka GM, Gibson DT. Metabolism of dibenzo-p-dioxin and chlorinated dibenzo- p-dioxins by a Beijerinckia species. Appl Environ Microbiol 1980; 39: 288 - 296.Google Scholar
  165. 161.
    Monna L, Omori T, Kodama T. Microbial degradation of dibenzofuran, fluorene and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl Environ Microbiol 1993; 59285 - 289.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jean Armengaud
  • Kenneth N. Timmis

There are no affiliations available

Personalised recommendations